

High Grade Nickel Mineralisation Defined Below 132N Open Pit

Highlights

- Infill drilling confirms high grade mineralisation below Widgie's 132N open pit
- Exceptionally high-grade assays of up to 25.95% Nickel
- Ultra-high grade pods defined within mineralised channel flows
- Mineralisation remains open at depth and the structure's lower channel flank remains unconstrained
- Geological modelling is underway with updated Mineral Resource Estimate to be completed in early 2024
- Favourable mineralogy with high nickel to sulphur ratios to compliment Widgie's wider resource base

Drilling Highlights Include:

• 23MERCD112	9.14m @ 10.44% Ni from 330.00m
Incl.	2.61m @ 18.88% Ni from 335.44m
• 23MERCD111	11.33m @ 2.77% Ni from 314.53m
Incl.	4.51m @ 5.30% Ni from 315.33m
• 23MERCD104	9.98m @ 2.61% Ni from 336.02m
Incl.	3.00m @ 5.72% Ni from 341.00m
• 23MERCD113	6.53m @ 1.79% Ni from 327.16m
• 23MERCD114	18.40m @ 0.81% Ni from 331.60m
• 23MERCD096	14.17m @ 0.88% Ni from 345.83m

Widgie Nickel's Managing Director and CEO, Mr Steve Norregaard, commented:

"These further results from drilling at 132N complete the resource drill out programs for 6 of the 12 known deposits within the Mt Edwards Nickel Project.

"132N has demonstrated excellent potential with some extraordinarily high grades providing encouragement, and importantly identifying opportunities for future resource growth.

"We look forward to seeing the results of the upcoming Scoping Study and in turn future resource upgrades demonstrating that a continuous and sustainable standalone mining operation is possible

WIDGIE NICKEL Critical metals for a cleaner future

thanks to the unique concentration of mineralisation Widgie possesses at its 100% owned Mt Edwards Project."

Widgie Nickel Ltd (ASX: **WIN**) ("**Widgie**" or "**the Company**") is pleased to provide an update on Resource drilling at its 132N Nickel Deposit ("**132N**") located 63km south of Coolgardie in WA's Goldfields.

Background

The recently completed 132N drilling program was designed to increase the level of geological confidence in the Resource below the current open pit to aid future underground mining studies. Previous mining of the 132N deposit was carried out by WMC and Consolidated Minerals in two phases of open pit mining in 1990 and 2008, mining a total of 63kt tonnes at 2.9% Ni.

The current 132N Mineral Resource Estimate (MRE) stands at 460kt at 2.0% Ni for 9,050 Ni tonnes at a 1% Ni cut-off(Table 1).

Table 1: 132N MRE

	Indic	ated	Infe	rred		TOTAL Resou	irce
Deposit	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Nickel Tonnes
132N	34	2.9	426	1.9	460	2.0	9,050

132N MRE (September 2020) published in Widgie Nickel's prospectus dated 19 August 2021

Location

132N is located on Mining Lease M15/101, 6km north-west of the Widgiemooltha township. Access is via the Coolgardie-Esperance Highway, 63km south of Coolgardie.

132N forms part of the Company's Mt Edwards Project, covering a significant 240 sq. kilometre land holding within the Widgiemooltha Nickel Province between historic Spargoville nickel mines to the north and the currently operating Cassini nickel mine to the south.

20 November 2023

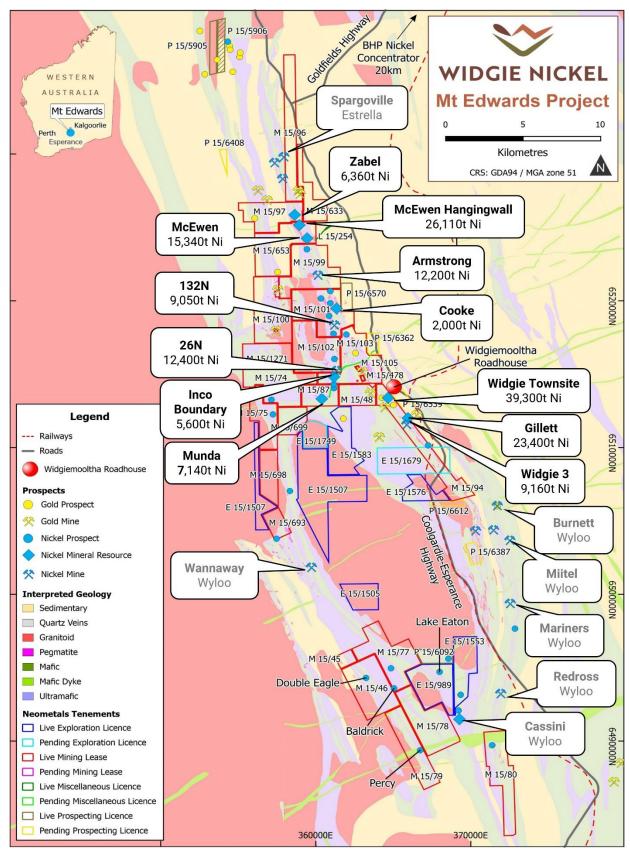


Figure 1: Widgie Nickel's, Mt Edwards Tenure and Nickel Mineral Resources

Geology and Nickel Mineralisation Interpretation

132N lies to the north of the Widgiemooltha Dome, a double plunging anticlinal structure cored by a deformed granitoid. The deposit is found on the western limb of the Mt Edwards Anticline with local Z-fold embayments that can accommodate mineralisation on multiple contacts. The pre-deformation stratigraphy at 132N consists of a basaltic footwall and ultramafic hanging wall with intermittent sediments upon the footwall basalt unit. The known nickel sulphide mineralisation plunges at 30° to the north, over a known strike extent of 500m beyond the current open pit with the mineralised channel averaging 150m in width. The mineralisation is found upon the basal contact where it grades from massive to disseminated sulphides into the hanging wall ultramafic unit. Depth of weathering varies from 5m-30m depth. Mineralisation remains open at depth and further work is required to constrain the lower mineralised channel that may host high grade mineralisation.

Discussion of Results

Drilling confirms high grade massive sulphide mineralisation upon the basal contact within a broader zone of disseminated sulphide mineralisation within the Ultramafic unit. Figure 2 demonstrates massive sulphide mineralisation intersected in 23MERCD112 demonstrating the typical massive sulphide mineralisation upon the basalt contact, grading into disseminated sulphides into the overlying ultramafic unit.

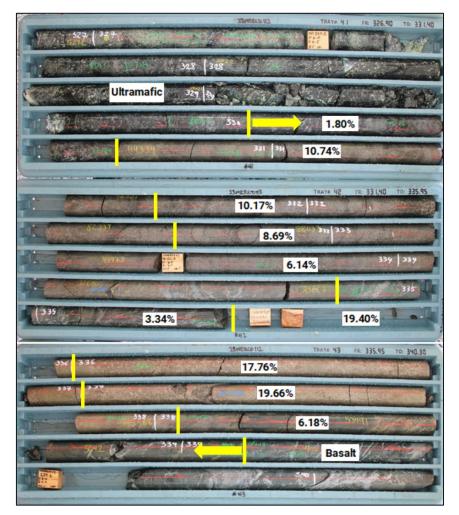


Figure 2: 23MERCD112 displaying individual Ni assay results from disseminated to massive sulphide mineralisation.

20 November 2023

Cross section A-'A 6519160mN in Figure 4 illustrates the continuity of high-grade mineralisation between drill holes 23MERCD112 and 23MERCD104.

A further highlight, hole 23MERCD104 displays exceptionally high grade within the massive sulphide component of the mineralisation with individual assay grades of up to 25.95% Ni from 341.62m to 342.08m down hole forming part of a wider zone of 9.98m @ 2.61% Ni. See Figure 3.



Figure 3: 23MERCD104 displaying massive sulphide mineralisation grading at 25.95% Ni

20 November 2023

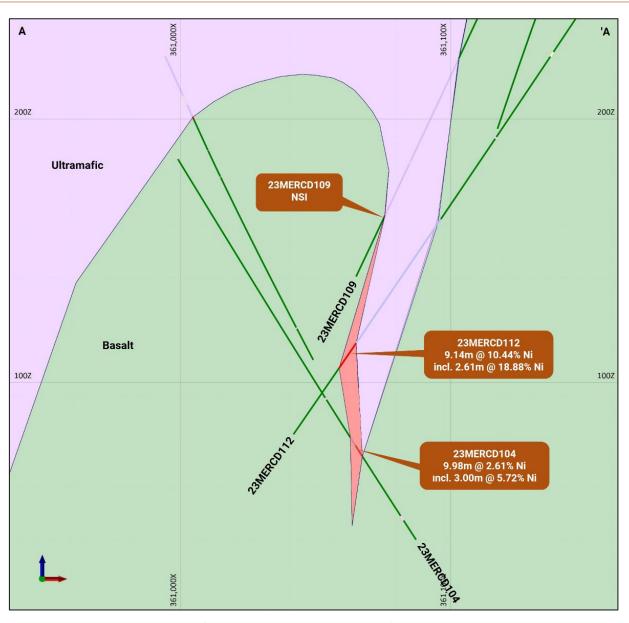


Figure 4: Section A-'A 6519160mN looking north

20 November 2023

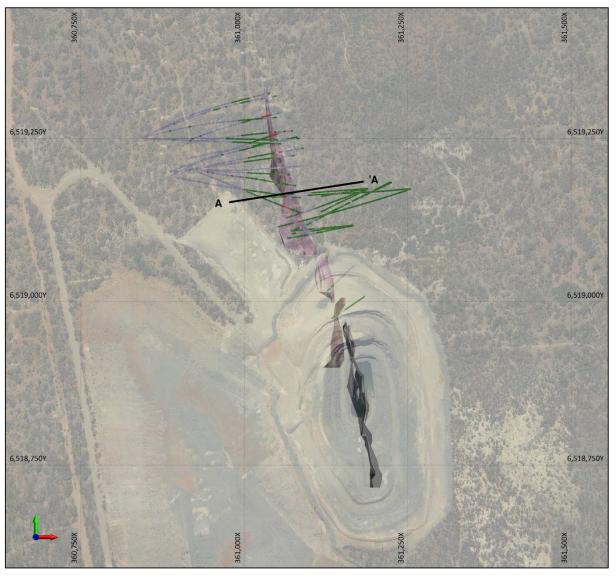


Figure 5: Plan view of section plane A-'A 6519160mN with 2023 drill campaign shown

Figure 6, shows a long section of 132N with 2023 and historic drill pierce points against 2020 MRE wireframes and the 132N open pit. Current 2023 drilling shown as solid fill and pre 2023 drilling represented as hollow circles. Results are coloured by Ni% x Interval metres.

Figure 7 highlights a high-grade pod identified by the 2023 drilling extending approximately 150m along strike including the mineralised intercept in hole 23MERCD112 (9.14m @ 10.44% Ni). These results are encouraging in that they demonstrate the potential to see the Resource expand down dip of the mineralised trough previously considered to be closed off. Figure 7 also demonstrates that 132N mineralisation remains open <u>both</u> at depth and in the area up plunge of the high-grade pod where no drilling exists, representing a high order drill target at 132N.

20 November 2023

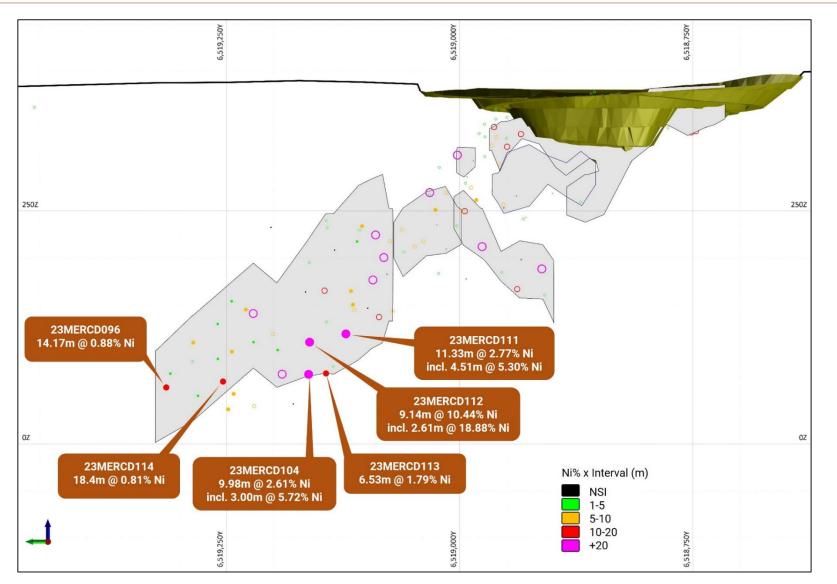


Figure 6: 132N Longsection looking East. Exisitng open pit and 2020 MRE wireframes (grey), nickel % x interval meters solid symbol 2023 drilling, hollow symbol = historic drilling results

ABN 77 648 687 094 Level 4, 220 St Georges Tce Perth, WA 6000

PO BOX 7713 Cloisters Square WA 6850 T: +61 8 6381 7250 F: +61 8 6381 7299

info@widgienickel.com.au www.widgienickel.com.au

20 November 2023

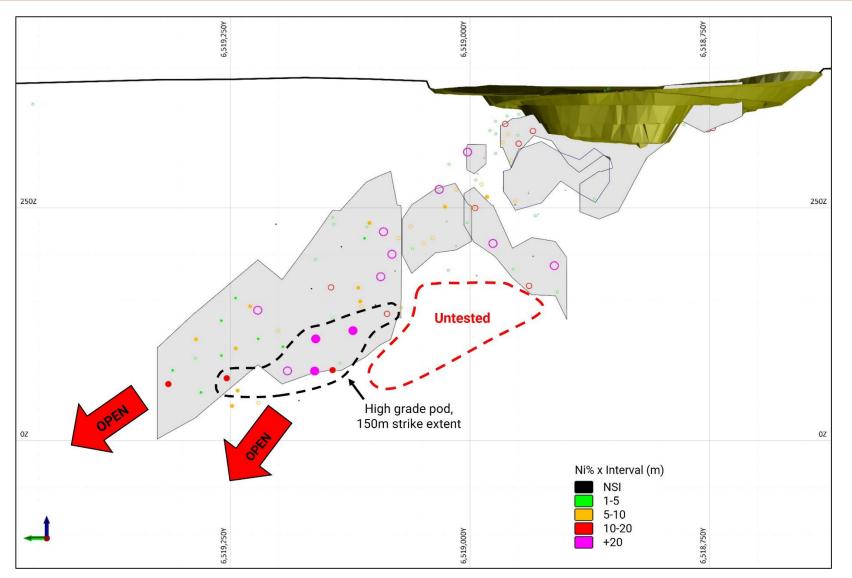


Figure 7: 132N longsection looking East. 132N high grade pod with strike extent of 150m, up plunge of high grade pod is untested and 132N mineralisation remains open at depth

ABN 77 648 687 094 Level 4, 220 St Georges Tce Perth, WA 6000

PO BOX 7713 Cloisters Square WA 6850 T: +61 8 6381 7250 F: +61 8 6381 7299 info@widgienickel.com.au www.widgienickel.com.au

Future Work

Results outlined in this report will be utilised to update the 132N geological and mineralisation model to facilitate a Mining Resource Estimate (MRE) update early in 2024.

Further drilling to expand the resource may be warranted pending completion of the MRE.

Drill Results

		705002		23 mineralisati							
Hole ID	Hole Type	From (m)	To (m)	Interval (m)	Ni %	Cu %	Co %	Fe %	S %	As ppm	3PGE (g/t)
23MERCD045	DD	278.64	283.76	5.12	1.14	0.07	0.02	7.1	1.6	66	0.49
and		289.18	290	0.82	1.44	0.05	0.03	7.2	2.1	150	0.67
and		293	294.15	1.15	0.88	0.07	0.01	7.8	1.5	610	0.77
23MERCD046	DD	296.26	299.5	3.24	1.15	0.08	0.02	7.7	2.0	795	0.64
and		315.43	320.2	4.77	0.80	0.08	0.01	6.2	1.5	1151	0.63
23MERCD046	DD	327.13	327.6	0.47	1.32	0.10	0.02	8.7	3.0	444	1.01
23MERCD048	DD	NSI									
23MERCD049	DD	267	276.75	9.75	0.59	0.07	0.02	6.9	0.7	165	0.22
23MERCD050	DD	303	305.52	2.52	1.16	0.05	0.02	8.3	2.1	182	0.88
23MERCD051	DD	310	317	7	1.10	0.08	0.01	6.3	1.2	123	0.75
23MERCD052	DD	253	255	2	0.98	0.09	0.02	6.5	1.2	409	0.52
23MERCD053	DD	271	278	7	0.65	0.05	0.02	7.1	0.8	83	0.21
and		281	284	3	1.01	0.16	0.02	8.0	1.6	89	0.47
23MERCD053	DD	302	307	5	0.62	0.01	0.02	6.7	0.5	699	0.28
23MERCD054	DD	268	275	7	0.77	0.06	0.02	7.4	1.0	36	0.31
and		288	297	9	1.00	0.07	0.02	8.0	1.3	53	0.33
23MERCD055	DD	132.94	137	4.06	1.69	0.13	0.02	7.4	1.8	6665	1.26
23MERCD056	DD	120.03	121.97	1.94	2.67	0.14	0.02	8.6	3.2	189	2.25
23MERCD096	DD	345.83	360	14.17	0.88	0.07	0.02	7.5	1.0	131	0.32
23MERCD097	DD	341	343	2	0.79	0.05	0.02	6.9	0.9	196	0.30
23MERCD098	DD	362.7	365.3	2.6	0.82	0.08	0.01	6.2	1.3	144	0.50
23MERCD099	DD	367.46	368.76	1.3	6.00	0.36	0.08	19.6	10.7	136	1.65
Incl.		367.76	368.13	0.37	17.50	0.27	0.23	36.2	30.8	337	2.83
and		382.46	385	2.54	0.93	0.06	0.01	8.0	1.4	1609	0.68
23MERCD100	DD	306.2	309	2.8	0.75	0.04	0.01	6.5	0.8	43	0.33
and		313.3	315	1.7	0.69	0.04	0.02	5.8	0.6	164	0.37
23MERCD101	DD	374.56	376	1.44	3.76	0.16	0.04	10.7	4.8	3492	2.86
23MERCD102	DD	NSI									
23MERCD104	DD	336.02	346	9.98	2.61	0.12	0.02	10.1	3.2	10987	2.00
Incl.		339	339.75	0.75	6.61	0.16	0.07	20.5	13.0	788	1.27
Incl.		341	344	3	5.72	0.18	0.04	11.3	5.3	33038	5.68
23MERCD105	DD	173.4	176.26	2.86	2.34	0.08	0.03	8.6	3.1	7423	2.26
23MERCD106	DD	182	186	4	0.67	0.04	0.01	7.0	0.8	83	0.32
23MERCD107	DD	NSI						-			
23MERCD108	DD	NSI									
23MERCD109	DD	NSI									
23MERCD110	DD	267	270	3	2.42	0.10	0.04	10.0	5.4	110	0.31
Incl.		267.83	269	1.17	5.01	0.18	0.08	15.7	10.8	149	0.72
23MERCD111	DD	314.53	325.86	11.33	2.77	0.17	0.04	11.1	4.9	152	0.64
Incl.	50	315.33	319.84	4.51	5.30	0.32	0.07	15.6	10.0	212	0.04
and		328	331.37	3.37	1.22	0.02	0.02	7.1	1.5	2583	0.99
23MERCD112	DD	330	339.14	9.14	10.44	0.75	0.02	26.5	18.5	170	1.93
Incl.		330.63	334.8	4.17	8.68	0.58	0.13	20.3	15.5	301	1.33
Incl.		335.44	338.05	2.61	18.88	0.38	0.11	39.1	32.0	14	0.65
23MERCD113	DD	327.16	333.69	6.53	1.79	0.48	0.23	9.4	2.8	6131	2.68
ZUNERODITS	טט	527.10	333.09	0.00	1.79	0.20	0.02	9.4	2.0	0131	2.00

Table 2: 132N 2023 mineralisation intercepts (0.5% Ni cut-off)

20 November 2023

Incl.		332.53	333.69	1.16	6.04	0.32	0.08	17.2	10.5	15757	7.28
23MERCD114	DD	331.6	353	18.4	0.81	0.05	0.02	7.4	1.0	164	0.41

Significant intercepts above 0.5% Ni, in places includes internal dilution to allow for grade continuity.

DD = Diamond Core Tail

3PGE = Au ppm + Pt ppm + Pd ppm

All intervals are quoted as down hole

Drilling Details

Hole ID	Tenement	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip°	Aziº
23MERCD045	M15/101	132N	DD	300.40	361224	6519184	386	-52.3	243.8
23MERCD046	M15/101	132N	DD	339.80	360923	6519203	369	-65.3	96.4
23MERCD048	M15/101	132N	DD	285.80	360925	6519203	369	-60.0	95.0
23MERCD049	M15/101	132N	DD	330.80	360904	6519198	368	-59.8	74.7
23MERCD050	M15/101	132N	DD	351.80	360890	6519199	367	-60.4	80.8
23MERCD051	M15/101	132N	DD	383.90	360887	6519199	367	-60.6	69.5
23MERCD052	M15/101	132N	DD	324.70	360916	6519219	369	-60.4	76.9
23MERCD053	M15/101	132N	DD	327.80	360914	6519244	369	-63.6	82.5
23MERCD054	M15/101	132N	DD	333.80	360911	6519245	369	-63.0	68.6
23MERCD055	M15/101	132N	DD	180.80	361169	6519056	379	-70.0	230.6
23MERCD056	M15/101	132N	DD	159.70	361185	6519008	374	-66.5	236.1
23MERCD096	M15/101	132N	DD	393.80	360852	6519256	366	-62.6	66.5
23MERCD097	M15/101	132N	DD	390.90	360851	6519254	366	-59.1	67.8
23MERCD098	M15/101	132N	DD	402.80	360847	6519253	366	-63.3	77.6
23MERCD099	M15/101	132N	DD	396.80	360845	6519250	366	-60.3	92.0
23MERCD100	M15/101	132N	DD	316.15	360911	6519242	369	-66.7	79.7
23MERCD101	M15/101	132N	DD	411.90	360852	6519248	366	-63.2	88.8
23MERCD102	M15/101	132N	DD	369.80	360923	6519203	369	-64.8	102.7
23MERCD104	M15/101	132N	DD	381.80	360892	6519191	367	-59.0	104.2
23MERCD105	M15/101	132N	DD	186.90	361166	6519117	384	-58.0	263.1
23MERCD106	M15/101	132N	DD	231.80	361168	6519117	384	-64.2	267.7
23MERCD107	M15/101	132N	DD	282.90	361166	6519116	384	-67.4	262.4
23MERCD108	M15/101	132N	DD	249.70	361186	6519172	388	-54.2	249.8
23MERCD109	M15/101	132N	DD	276.80	361188	6519173	388	-58.3	266.5
23MERCD110	M15/101	132N	DD	300.70	361226	6519183	386	-50.4	246.9
23MERCD111	M15/101	132N	DD	384.70	361255	6519173	382	-49.8	251.6
23MERCD112	M15/101	132N	DD	369.50	361254	6519173	382	-49.3	264.7
23MERCD113	M15/101	132N	DD	372.90	360926	6519200	369	-61.2	110.6
23MERCD114	M15/101	132N	DD	369.80	360890	6519194	367	-62.0	64.4

Table 3: Collar details for holes reported in this ASX announcement

Co-ordinates and azimuths in MGA (GDA94) Zone 51

DD = Diamond Core

Competent Person Statement – Exploration Results

The information in this announcement that relates to exploration results and sampling techniques is based on and fairly represents information and supporting documentation compiled by Mr William Stewart, who is a full-time employee of Widgie Nickel Limited. Mr Stewart is a member of the Australian Institute of Metallurgy and Mining (member no 224335) and Australian Institute of Geoscientists (member no 4982). Mr Stewart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent

Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stewart consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website <u>www.widgienickel.com.au</u>.

Date	Title
20/09/2021	Prospectus dated 19 August 2021
11/08/2023	Exceptional 132N Massive Sulphide Hit
13/09/2023	Exceptional 132N Massive Sulphide Hit Confirmed

Table 4: Compliance Statement

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Approved by: Board of Widgie Nickel Ltd

-ENDS-

For further details please contact:	Media Enquiries
Steve Norregaard	Steve Kaless
Managing Director	White Noise Communications
steve@widgienickel.com.au	steve@whitenoisecomms.com
0472 621 529	0477 376 227

20 November 2023

About Widgie Nickel

Widgie Nickel (ASX:WIN) is a mineral exploration company holding 240km² of granted mining tenure across the highly prolific Widgiemooltha Dome with exposure to the critical metals nickel and lithium.

The Company is developing its Mount Edwards Nickel Project which is a unique collection of twelve deposits with a total Mineral Resource Estimate for 11.14 Mt @ 1.5% Ni for 170,000t^{*}. Five of the deposits are subject of a Scoping Study contemplating development of a standalone nickel concentrator at Mt Edwards.

Widgie also holds the Faraday-Trainline Lithium Project, a shovel ready project with a Mineral Resource Estimate of 1.96 Mt at 0.69% Li_2O^* . The deposit shows substantial expansion potential with mineralisation open at depth with potential for repeat stacked pegmatites.

The Company's tenure is located just 80km south of the major regional centre of Kalgoorlie in Western Australia, 40km south-west of Kambalda and along strike to the north from Wyloo's Cassini Nickel mine.

*The information that relates to the JORC Mineral Resource Estimates for Mount Edwards Nickel Project and Faraday-Trainline Lithium Deposit is extracted from the Company's ASX Announcements: 6 October 2023 and 8 November 2023 which are available to view on the Company's website: www.widgienickel.com.au

Widgie Nickel Project Map

Table 1 information in accordance with JORC 2012: Mt Edwards Nickel Exploration

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Critaria	Section 1 Sampling T	Commentary				
CriteriaJORC Code ExplanationSampling echniquesNature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of samplingInclude reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation		relation to the recently completed drilling and sampling progra conducted between from April 2023 through to August 2023. All RC pre-collar samples have been acquired at one metre interv from a chute beneath a cyclone on the RC drill rig. Sample size w then reduced through a cone sample splitter. Two identical su samples have been captured in pre-numbered calico bags, w typical masses ranging between 2 and 3.5kg. Care was taken ensure that both original sub-samples and duplicate sub-samp have been collected representatively, and therefore are of eq quantities. The remainder of the sample (the reject) has be retained in the short term in sample piles at the drill site. All samples were assessed by a geologist utilising a PXRF and deerr unmineralised. Therefore, no RC samples for this program we subtract for earching				
	be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	DD samples of NQ2 size quarter core have been acquired according to logged lithological and mineralisation boundaries at lengths between 0.3 metres to 1.3 metres. No other measurement tools related to sampling have been used in the holes for sampling other than directional/orientation survey tools.				
		Base metal, multi-element analysis was completed using a 4-acid digest with ICP-OES finish for 9 elements. PGE's (Au, Pt and Pd) analysis was completed via 25g charge Fire Assay with an ICP-MS finish.				
Drilling Techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Twenty-nine (29) drillholes were completed and reported in this announcement for 9,408.95m drilled. All holes were drilled with ar RC pre-collar and finished with a diamond core tails to capture the mineralised horizon The RC rig is a KWL350 with a face sampling auxiliary compresso				
		and booster. Drill rods are 6 metres long and drill bit diameter is 143mm, and hence so is the size of drillhole diameter. Holes have been drilled at a nominal dip angle between 50-70° with varying azimuth angles to orthogonally intercept the interpreted favourable geological contact zones.				
		The DD rig is an Austex 1550 drilling NQ2 with standard tube. Core is oriented using Reflex ACT III tool.				

20 November 2023

	Section 1 Sampling T						
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	The sample recovery is logged by a geologist during drilling, and recoveries have been considered acceptable.					
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Minor sample loss was recognised while sampling the first metre o some drillholes due to very fine grain size of the surface and near-surface material.					
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade has been recognised.					
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All RC drillholes have been geologically logged for lithology weathering, alteration, and mineralogy. All samples have been logged in the field at the time of drilling and sampling (both quantitatively and qualitatively where viable), with spoil materia and sieved rock chips assessed. All RC trays and sample spoil piles are photographed.					
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant	All DD holes have been geologically logged (both quantitatively a qualitatively) for lithology, weathering, alteration and minerald and sampled following drilling. All DD holes are photographed.					
	intersections logged.	Geochemical analysis of each hole has been correlated back to logged geology for validation.					
Sub-sampling techniques and sample	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	The sample preparation technique carried out in the field is considered industry best standard practice and was completed by the geologist.					
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC: Samples collected at 1 metre intervals from a cyclone-mour					
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	cone splitter to yield a 2 to 3 kg sub-samples.					
		DD: Samples of NQ2 size core at lengths between 0.3 metres to 1.3 metres have been cut with an Almonte core saw and quarter core submitted for analysis. With the remaining 3/4 core retained for metallurgical testing.					
		Individual samples have been weighed as received and then dried in a gas oven for up to 12 hours at 105°C.					
		Samples >3 kg's have been riffle split 50:50 and excess discarded All samples have been then pulverised in a LM5 pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks have been performed to verify passing was achieved.					
		A 300g split was taken at the bowl upon completion of the grind and sent to the next facility for assay. The remainder of the sample (nov pulverised) was bagged and retained until further notice.					
		For each submitted sample, the remaining sample (material) less the aliquot used for analysis has been retained, with the majority retained and returned to the original calico bag and a nominal 300 portion split into a pulp packet for future reference.					

20 November 2023

	Section 1 Sampling T	echniques and Data
Quality of assay data and laboratory tests	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Widgie Nickel has established QAQC procedures for all drilling and sampling programs including the use of commercial Certified Reference Material (CRM) as field and laboratory standards, field and laboratory duplicates and blanks.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Nickel sulphide CRM samples have been inserted into the batches by the geologist, at a nominal rate of 5% of the total samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Field duplicate samples have been taken in visibly mineralised zones, at a rate of 2% of total samples.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or	Samples of blank material have been submitted immediately after visibly mineralised zones at a nominal rate of 5% of the total samples.
	total.	Sample size is considered appropriate to the grain size of the material being sampled.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations	Assaying was Intertek Genalysis with standards and duplicates reported in the sample batches.
	factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Individual samples have been assayed for a suite of 33 element including nickel related analytes as per the laboratory's procedur for a 4-acid digestion (HCL/HCLO4/HF/HNO3) followed by a Induced Coupled Plasma Mass Spectrometry (ICP-OES) analytica technique. PGE's (Au, Pt and Pd) analysis was completed via Fir Assay with a Mass Spectrometry (MS) finish.
		Internal sample quality control analysis was then conducted o each sample and on the batch by the laboratory.
		Results have been reported to Widgie Nickel in CSV, PDF and SI formats.
		A detailed QAQC analysis was carried out with all results assesse for repeatability and meeting expected values relevant to nickel an related elements. Any failures or discrepancies were followed up a required.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Assay results are provided by the laboratory to Widgie Nickel in CSV PDF and SIF formats, and then validated and entered into th database managed by an external contractor. Backups of th database are stored both in and out of office.
	The use of twinned holes The verification of significant intersections by either independent or alternative company	Assay, Sample ID and logging data are matched and validated usin filters in the drill database. The data is further visually validated b Widgie Nickel geologists and database staff.
	personnel. Discuss any adjustment to assay data	Significant intersections are verified by senior Widgie Nicke geologists.
		There has been no validation and cross checking of laborator performance at this stage.
		No adjustment of assay data has been undertaken.

20 November 2023

	Section 1 Sampling T	echniques and Data
Location of data points	Section 1 Sampling T Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	 All hole collar location data has been collected by an RTK DGPS accurate to 0.02m horizontal and 0.1m vertically. MGA94_51S is the grid system used in this program. Downhole survey using Reflex Sprint IQ gyro survey equipment was conducted during the program by the drilling contractor. Downhole Gyro survey data have been converted from true north to MGA94 Zone51S and saved into the data base. The formulas used are: Grid Azimuth = True Azimuth + Grid Convergence. Grid Azimuth = Magnetic Azimuth + Magnetic Declination + Grid Convergence. The Magnetic Declination and Grid Convergence have been
Data spacing and distribution.	Data spacing for reporting of Exploration Results	calculated with and accuracy to 1 decimal place using plugins in QGIS. Magnetic Declination = 0.8 Grid Convergence = -0.7 Topographic control is provided by collar surveys drilled in this campaign, and by either collar survey or historical topographic surveys for historical data. Topographic control is considered adequate. All RC drillholes have been sampled at 1 metre intervals down hole.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	All DD drillhole have been sampled at between 0.3 and 1.3 metres. Drillholes have been designed and completed to infill and extend known mineralisation, with a nominal drillhole spacing of recent and historical drilling of 30 to 60 metres. The drillhole spacing is considered sufficient to establish the degree of geological and grade continuity appropriate to estimate and report an Inferred Mineral Resource or better. Compositing has been applied only as an interim measure to determine nickel grade anomalism, with follow up assay of individual samples undertaken where anomalism is detected.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	In the Mt. Edwards region, nickel mineralisation is typically located on the favourable basal contact zone of ultramafic rock units overlaying metabasalt rock units. All drillholes have been planned at varying dip and azimuth angles, in order to where possible orthogonally intercept the interpreted favourable geological contact zones. Geological information (including structural) from both historical geological mapping as well as current geological mapping have been used during the planning of these drillholes. Due to the steep orientation of the mineralised zones in some place, there will be some exaggeration of the width of intercepts.

Section 1 Sampling Techniques and Data					
Sample security	The measures taken to ensure sample security.	All DD samples were transported to the Widgie Nickel warehouse in Carlisle, WA, with cut samples then transported to Intertek Perth at 544 Bickley Road, Maddington. Sample security was not considered a significant risk to the project. No specific measures have been taken by Widgie Nickel to ensure sample security beyond the normal chain of custody for a sample submission.			
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the exploration program was undertaken prior to the drill program by Widgie Nickel Geology management. Regular reviews and site visits have been made during the conduct of drill program. Staff and contract geologists have been based on site prior to, during and on completion of the drill and sample program to ensure proper quality control as per the modern mining industry standards.			

Section 2 Reporting of Exploration Results

(Criteria listed in section 1, and where relevant, in sections 3 and 4, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The 132N deposit is located on M15/101, which is held by Mt Edwards Critical Metals Pty Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Widgie Nickel has held M15/101 since July 2021; hence all prior work has been conducted by other parties.
		The ground has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by Western Mining Corporation. Numerous companies have taken varying interests in the project area since this time.
		The most recent drilling undertaken at 132N prior to that by Widgie, was completed by Neometals in 2019.
		Historical exploration results and data quality have been considered during the planning stage of drill locations on M15/101 for this drilling program, and results of the program are being used to validate historic data.
Geology	Deposit type, geological setting and style of mineralisation.	The geology at 132N comprises steeply dipping and folded sequences of ultramafic rock, metabasalt rock units and intermittent meta-sedimentary units. Contact zones between ultramafic rock and metabasalt are considered favourable zones for nickel mineralisation. The mineralisation is characterised as primary nickel withir massive and disseminated sulphides, interpreted as being hosted within ultramafic lava flows and associated therma erosion channels.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar	One (1) drillhole have been completed. This hole has a DD tai have has been completed on the RC pre-collar. All drillholes have been drilled at a nominal -60° +/- 10° dip a varying azimuth angles.

Section 2 Reporting of Exploration Results		
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Relevant drillhole information has been tabled in the report including hole ID, drill type, drill collar location, elevation, drilled depth, azimuth, dip and respective tenement number. The drillhole has been tabulated within the accompanying report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	The significant intervals reported are an average nickel grade weighted by the interval length. Where the significant interval includes internal dilution, this is included in the weighted average grade. No top-cuts have been applied. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length true width not known')	Nickel mineralisation is hosted in the ultramafic rock unit close to the metabasalt contact zones. All drilling is angled to best intercept the favourable contact zones between ultramafic rock and metabasalt rock units to best as possible test true widths of mineralisation. Due to the ~85° orientation of the mineralised zones there is an exaggeration of the width of intercepts. True width is expected to be 60% of the downhole intercept.
Diagrams	length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	A map of the drilling program location and tenement relative to the total Mt Edwards project is shown in the report. Cross sections and long sections are shown for several of the drillholes completed.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics	No further exploration data has been collected at this stage.

20 November 2023

Section 2 Reporting of Exploration Results			
	potential deleterious or contaminating substances.		
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or large scale step out drilling.	Drill targeting of the down plunge extension of 132N main channel and up plunge of the high-grade pod will be followed up in future drill testing.	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Results from report will facilitate an updated geological model and Mineral Resource Estimate to be delivered in 2024.	