

Drilling Delivers High-grade Lithium at Trainline

Key Highlights

- Infill drilling confirms near surface, high grade mineralisation at Widgie Nickel's Trainline Lithium Prospect immediately north of Faraday Lithium deposit
- Infill results outperform the first pass of drill assays previously reported¹. Re-assaying results via the fusion method are expected in the coming weeks with upside expected²
- Assay results boost the scale and grade of the Faraday-Trainline Lithium Project

Following Widgie Nickel's Ltd (ASX: **WIN**) ("**Widgie**" or "**the Company**") announcement of its discovery of the Trainline prospect ("**Trainline**") (refer ASX release dated 4 July 2023), Widgie is pleased to announce the successful results of the follow up infill reverse circulation ("RC") drill program at Trainline.

Drilling Highlights include:

•	23MERC338	Incl.	12m @ 0.99% Li ₂ O from 31m 9m @ 1.15% Li₂O from 31m
•	23MERC339	Incl.	15m @ 0.85% Li ₂ O from 37m 9m @ 1.01% Li ₂ O from 42m
•	23MERC333	incl.	8m @ 0.97% Li ₂ O from 36m 5m @ 1.30% Li ₂ O from 38m
•	23MERC334	Incl. and Incl.	5m @ 0.88% Li ₂ O from 34m 2m @ 1.68% Li ₂ O from 37m 8m @ 0.67% Li ₂ O from 45m 4m @ 1.06% Li ₂ O from 45m
•	23MERC336	Incl.	10m @ 0.72%Li ₂ 0 from 46m 5m @ 0.88% Li₂0 from 48m
•	23MERC340	Incl.	12m @ 0.66% Li ₂ O from 54m 4m @ 1.07% Li ₂ O from 54m
•	23MERC341	Incl.	7m @ 0.62% Li ₂ O from 66m 2m @ 0.99% Li₂O from 68m
•	23MERC366	and	1m @ 2.15% Li₂0 from 21m 10m @ 0.72% Li ₂ 0 from 38m

Widgie Nickel's Managing Director and CEO Mr Steve Norregaard commented:

"Widgie's lithium endowment now shows it has real growth potential with holes now delineating mineralisation at Trainline on a tighter 40m by 40m spacing. These results show excellent promise in defining consistent broad zones of high-grade mineralisation dipping shallowly to the west, not dissimilar to Faraday. The Faraday-Trainline Lithium Project has all the hallmarks of a very low-cost development able to be commercialised in the near term."

¹New Lithium Discoveries Position Widgie for Resource Growth (4/07/2023)

²Higher grade Lithium to come on cusp shovel ready at Faraday (27/09/2023)

The Faraday-Trainline Lithium Project area is located on Mining Lease M15/102, 4km west north-west of the Widgiemooltha Township. Access is via the Coolgardie-Norseman Rd, 63km south of Coolgardie. Faraday and Trainline are central to Widgie's Mt Edwards Project, covering a significant land holding within the "Lithium Corridor" between Mt Marion to the north, Pioneer Dome to the south and Bald Hill to the east(Figure 1).

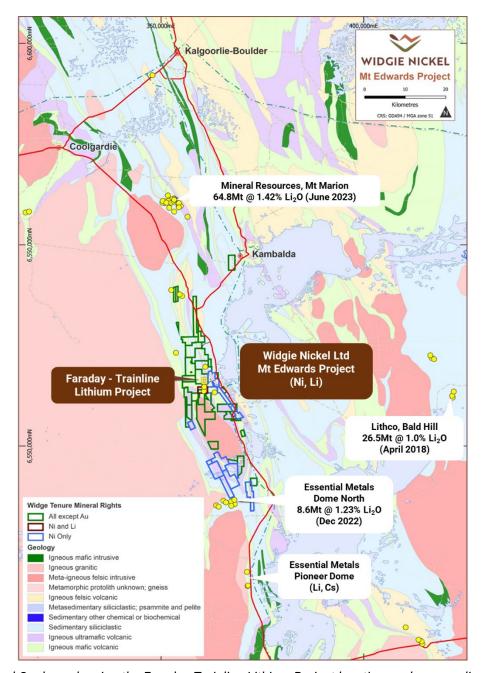


Figure 1 - Regional Geology showing the Faraday-Trainline Lithium Project location, and surrounding lithium Projects

Geology and Lithium Mineralisation Interpretation

The Mt Edwards Project lithium tenure covers the northern margins of the Widgiemooltha Dome. The mineralisation at Faraday-Trainline Project is hosted within Lithium-Caesium-Tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions. The Trainline lithium prospect is located approximately 75m to the north of Faraday lithium deposit (Figure 2), which are separated by a cross cutting east-west dolerite dyke that truncates the pegmatite bodies to the north and south.

Drilling Delivers High-grade Lithium at Trainline

The stacked pegmatites are intruded into the steeply dipping mafic/ultramafic country rock. The pegmatites dip shallowly to the west at 20° and are found to be outcropping in places but generally under a thin layer of cover with widths varying from 1m to 15m in thickness, with greater thicknesses observed where the pegmatite exists within an ultramafic host.

The pegmatites have a combined strike length of 800m north-south and remain open at depth.

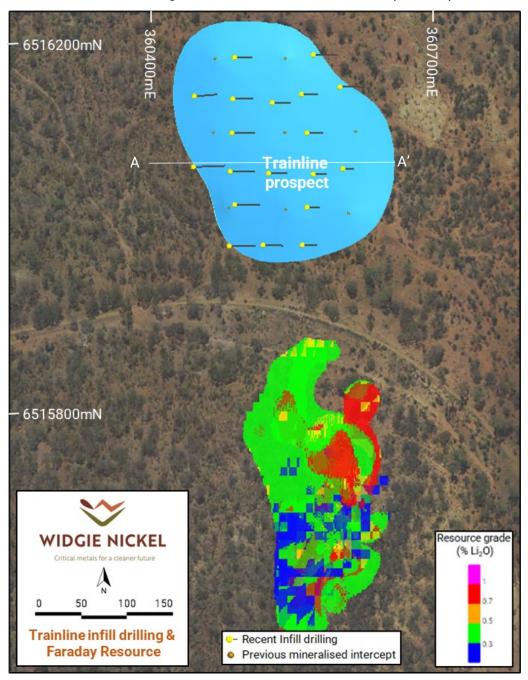


Figure 2 Plan view of recent Trainline (blue wireframe) infill drilling and Faraday mineral resource to the south

Discussion of Results

This RC infill drilling campaign was designed to reduce the drill spacing from 80m by 80m drilling to 40m by 40m focussed on the higher-grade core (Figure 2). These drilling results have returned significantly higher lithium grades than the 80m x 80m drilling assays³. The infill drilling has confirmed the continuity of the lithium bearing pegmatite returning high grade results above 1% Li_2O . Including **9m** @ **1.15%** Li_2O (23MERC338) and **9m** @ **1.01%** Li_2O (23MERC339) as illustrated in Figure 3 and Figure 4 below.

3-As reported in ASX Release: Higher grade Lithium to come on cusp shovel ready at Faraday, 27 September 2023 the initial 4-Acid digest assaying method used at Faraday and Trainline has been demonstrated as being not appropriate. The re-assaying of samples from the initial 80m x 80m drill samples using the fusion method are expected to be received over the next 4-5 weeks.

Cross section 6516060mN at Trainline demonstrates the grade continuity and shallow nature of the pegmatites intersected in the recent drilling (Figure 3). Trainline covers a mineralised area of 200m by 200m with mineralised intercepts within the main pegmatite up to 15m wide (23MERC339) currently defined to a vertical depth of 75m (23MERC120).

Mineralisation remains open down dip with the western most holes of the infill programme 23MERC336 and 23MERC341 returning intercepts of 10m @ 0.72% Li₂O (incl. 5m @ 0.88% Li₂O) and 7m @ 0.62% Li₂O (incl. 2m @ 0.99% Li₂O) respectively.

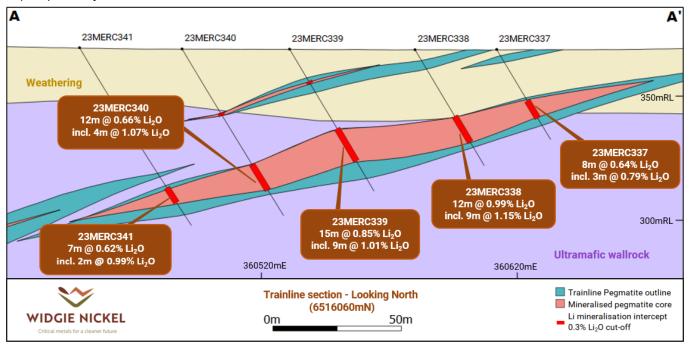


Figure 3 - Cross section 6516060mN, infill drilling at Trainline

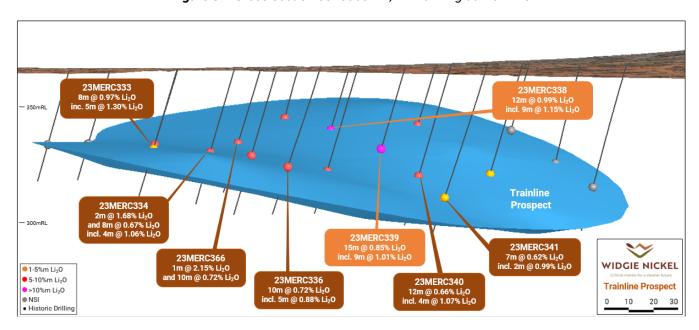


Figure 4 - Oblique view showing infill intercepts at the recent Trainline discovery looking southeast (120°)

Future Work

Results outlined in this release will be used to inform a maiden mineral resource estimate following an additional phase of infill drilling to achieve 20m by 20m drill density. Mineral identification by XRD analysis is underway to confirm spodumene as the dominant lithium mineral, as is the case for the Faraday deposit.

Drill Results

Table 1 Trainline prospect infill lithium drill intercepts

Hole ID	Drill Type	Prospect	Programme	Depth From (m)	Depth To (m)	DH Width (m)	Li ₂ O (%)
23MERC330	RC	Trainline	Infill			NSI	
23MERC331	RC	Trainline	Infill	39	40	1	0.56
23MERC332	RC	Trainline	Infill			NSI	
23MERC333	RC	Trainline	Infill	4	6	2	0.37
and	RC	Trainline	Infill	36	44	8	0.97
incl.	RC	Trainline	Infill	38	43	5	1.30
23MERC334	RC	Trainline	Infill	16	17	1	0.49
and	RC	Trainline	Infill	34	39	5	0.88
incl.	RC	Trainline	Infill	37	39	2	1.68
and	RC	Trainline	Infill	45	53	8	0.67
incl.	RC	Trainline	Infill	45	49	4	1.06
23MERC335	RC	Trainline	Infill	41	52	11	0.69
incl.	RC	Trainline	Infill	43	49	6	0.97
23MERC336	RC	Trainline	Infill	46	56	10	0.72
incl.	RC	Trainline	Infill	48	53	5	0.88
23MERC337	RC	Trainline	Infill	24	32	8	0.64
incl.	RC	Trainline	Infill	26	29	3	0.79
23MERC338	RC	Trainline	Infill	31	43	12	0.99
incl.	RC	Trainline	Infill	31	40	9	1.15
23MERC339	RC	Trainline	Infill	15	16	1	1.11
and	RC	Trainline	Infill	37	52	15	0.85
incl.	RC	Trainline	Infill	42	51	9	1.01
23MERC340	RC	Trainline	Infill	54	66	12	0.66
incl.	RC	Trainline	Infill	54	58	4	1.07
23MERC341	RC	Trainline	Infill	66	73	7	0.62
incl.	RC	Trainline	Infill	68	70	2	0.99
23MERC342	RC	Trainline	Infill	1	2	1	0.82
and	RC	Trainline	Infill	25	28	3	0.47
and	RC	Trainline	Infill	43	44	1	0.57
and	RC	Trainline	Infill	51	61	10	0.71
incl.	RC	Trainline	Infill	51	54	3	1.22
23MERC366	RC	Trainline	Infill	6	7	1	0.75
and	RC	Trainline	Infill	21	22	1	2.15
and	RC	Trainline	Infill	38	48	10	0.72
23MERC367	RC	Trainline	Infill	1	3	2	1.41
and	RC	Trainline	Infill	13	15	2	0.58
and	RC	Trainline	Infill	29	39	10	0.61
and	RC	Trainline	Infill	43	46	3	0.99
23MERC368	RC	Trainline	Infill	55	66	11	0.45
23MERC369	RC	Trainline	Infill			NSI	
23MERC370	RC	Trainline	Infill			NSI	
23MERC371	RC	Trainline	Infill			NSI	

Significant intercepts above 0.3% Li₂O, in places includes internal dilution to allow for grade continuity.

NSI = no significant intersection, Infill = intercepts within the area of the 2023 mineralisation wireframe, RC = Reverse circulation

Drilling Details

Table 2 Collar details for holes reported in this ASX announcement

Hole ID	Prospect	Drill Type	Total Depth (m)	Survey Method	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC330	Trainline	RC	54	GP	360578.0	6516188.0	367.0	-60.0	90.0
23MERC331	Trainline	RC	54	GP	360492.0	6516185.0	367.0	-60.0	90.0
23MERC332	Trainline	RC	54	GP	360607.0	6516153.0	367.0	-60.0	90.0
23MERC333	Trainline	RC	66	GP	360565.0	6516145.0	368.0	-60.0	90.0
23MERC334	Trainline	RC	66	GP	360533.0	6516136.0	368.0	-60.0	90.0
23MERC335	Trainline	RC	72	GP	360490.0	6516140.0	368.0	-60.0	90.0
23MERC336	Trainline	RC	72	GP	360448.0	6516143.0	368.0	-60.0	90.0
23MERC337	Trainline	RC	42	GP	360610.0	6516064.0	369.0	-60.0	90.0
23MERC338	Trainline	RC	54	GP	360578.0	6516058.0	369.0	-60.0	90.0
23MERC339	Trainline	RC	66	GP	360529.0	6516059.0	369.0	-60.0	90.0
23MERC340	Trainline	RC	78	GP	360487.0	6516061.0	369.0	-60.0	90.0
23MERC341	Trainline	RC	84	GP	360447.0	6516066.0	369.0	-60.0	90.0
23MERC342	Trainline	RC	72	GP	360489.0	6516103.0	368.0	-60.0	90.0
23MERC366	Trainline	RC	60	GP	360571.0	6516103.0	368.0	-60.0	90.0
23MERC367	Trainline	RC	54	GP	360571.0	6516022.0	369.0	-60.0	90.0
23MERC368	Trainline	RC	82	GP	360492.0	6516025.0	370.0	-60.0	90.0
23MERC369	Trainline	RC	48	GP	360566.0	6515981.0	371.0	-60.0	90.0
23MERC370	Trainline	RC	62	GP	360523.0	6515981.0	370.0	-60.0	90.0
23MERC371	Trainline	RC	80	GP	360486.0	6515980.0	370.0	-60.0	90.0

Survey method GP = Handheld Global Positioning System (Garmin GPS)

Competent Person Statement

The information in this announcement that relates to exploration results and sampling techniques is based on and fairly represents information and supporting documentation compiled by Mr William Stewart, who is a full-time employee of Widgie Nickel Limited. Mr Stewart is a member of the Australian Institute of Metallurgy and Mining (member no 224335) and Australian Institute of Geoscientists (member no 4982). Mr Stewart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stewart consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

T: +61 8 6381 7250

F: +61 8 6381 7299

Drilling Delivers High-grade Lithium at Trainline

2 October 2023

Compliance Statement

The information in this report that relates to Exploration Results are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website www.widgienickel.com.au.

Date	Title
08/12/2022	Assays confirm High Grade Lithium discovery at Faraday
09/01/2023	Further Assays Reaffirm High-grade Lithium Discovery at Faraday
14/02/2023	Widgie Fast-tracks Faraday Li₂O Deposit for DSO Opportunity
29/03/2023	Maiden Resource Proves Up Faraday DSO Stater Pit Opportunity
08/05/2023	Faraday Mining Proposal Lodged
04/07/2023	New lithium Discoveries Position Widgie for Resource Growth
2/08/2023	Faraday Metallurgical Testwork-Excellent Flotation Response
4/08/2023	Faraday Mining Proposal Approved
27/09/2023	Higher grade Lithium to come on cusp shovel ready at Faraday

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Approved by: Board of Widgie Nickel Ltd

-ENDS-

T: +61 8 6381 7250

F: +61 8 6381 7299

For further details please contact

Steve Norregaard Managing Director steve@widgienickel.com.au 0472 621 529

Media & Broker Inquiries:

Steve Kaless White Noise Communications steve@whitenoisecomms.com +618 6556 8614

Table 1 information in accordance with JORC 2012: Mt Edwards Lithium Exploration

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Section 1 Sampling	Techniques and Data
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	All new data collected from the Trainline Lithium Prospect discussed in this report is in relation to Reverse Circulation (RC) drilling completed at the Trainline Lithium Prospect between 19 March 2023 and 1 May 2023. All RC samples have been acquired at one metre intervals from a chute beneath a cyclone on the RC drill rig. Sample size was then reduced through a cone sample splitter. Two identical sub-samples have been captured in pre-numbered calico bags, with typical masses ranging between 2 and 3.5kg. Care was taken to ensure that both original sub-samples and duplicate sub-samples have been collected representatively, and therefore are of equal quantities. The remainder of the sample (the reject) has been retained in the short term in sample piles at the drill site. All samples were assayed at single metre sample intervals. With sampling of the prospective pegmatite vein and 2-5m into the mafic/ultramafic waste rock host to ensure representative sampling. No other measurement tools related to sampling have been used in the holes for sampling other than directional/orientation survey tools. A sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W.
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Nineteen (19) drillholes have been completed and reported in this announcement for 1,220m drilled. The RC rig is a KWL350 with a face sampling auxiliary compressor and booster. Drill rods are 6 metres long and drill bit diameter is 143mm, and hence so is the size of drillhole diameter. Holes have been drilled at a nominal dip angle of -60° with varying azimuth angles to orthogonally intercept the interpreted favourable geological contact zones.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The sample recovery is logged by a geologist during drilling, and recoveries have been considered acceptable. With all sampling being dry. Minor sample loss was recognised while sampling the first metre of some drillholes due to very fine grain size of the surface and near-surface material. No relationship between sample recovery and grade has been recognised.

	Section 1 Sampling	Techniques and Data
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation,	All RC drillholes have been geologically logged for lithology, weathering, alteration, and mineralogy. All samples have been logged in the field at the time of drilling and sampling (both quantitatively and
	mining studies and metallurgical studies.	qualitatively where viable), with spoil material and sieved rock chips assessed. All RC holes are photographed.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The total length of RC drilling as reported is 1,220m.
	The total length and percentage of the relevant intersections logged.	Geochemical analysis of each hole has been correlated back to logged geology for validation.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling pertains to this announcement.
, ,	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The sample preparation technique carried out in the field is considered industry best standard practice and was completed by the geologist.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All samples were dry
		Samples collected at 1 metre intervals from a cyclone-mounted cone splitter to yield a 2 to 3 kg sub-samples, collected in the field, and sent to Intertek Kalgoorlie for receival then sorted and recorded.
		Individual samples were weighed as received and then dried in an oven for up to 12 hours at 105C.
		Samples >3 kg's were riffle split 50:50 and excess discarded. All samples were then pulverised in a LM5 pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks were performed to verify passing was achieved.
		A 300g split was taken at the bowl upon completion of the grind and sent to the next facility for assay. The remainder of the sample (now pulverised) was bagged and retained until further notice.
		For each submitted sample, the remaining sample (material) less the aliquot used for analysis has been retained, with the majority retained and returned to the original calico bag and a nominal 100g portion split into a pulp packet for future reference.
Quality of assay data and laboratory	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Widgie Nickel has established QAQC procedures for all drilling and sampling programs including the use of commercial Certified Reference Material (CRM) as field and laboratory standards, field and laboratory duplicates and blanks.
tests	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Lithium CRM samples have been inserted into the batches by the geologist, at a nominal rate of 5% of the total samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Field duplicate samples have been taken in visibly mineralised zones, at a rate of 2% of total samples.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples of blank material have been submitted immediately after visibly mineralised zones at a nominal rate of 5% of the total samples. Sample size is considered appropriate to the grain size of the material
	For geophysical tools, spectrometers, handheld XRF	being sampled.
	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Samples were analysed at Intertek Perth, WA. Individual samples have been assayed for a suite of 21 elements including lithium related analytes as per the laboratory's procedure for a sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy	Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W.
	(i.e. lack of bias) and precision have been established.	Internal sample quality control analysis was then conducted on each sample and on the batch by the laboratory.

	Section 1 Sampling	Techniques and Data
		Results have been reported to Widgie Nickel in CSV, PDF and SIF formats.
		A detailed QAQC analysis was carried out with all results assessed for repeatability and meeting expected values relevant to lithium and related elements. Any failures or discrepancies were followed up as required.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes	Assay results are provided by the laboratory to Widgie Nickel in CSV, PDF, XLS and SIF formats, and then validated and entered into the database managed by an external Database contractor. Backups of the database are stored both in and out of office.
	The verification of significant intersections by either independent or alternative company personnel.	Assay, Sample ID and logging data are matched and validated using filters in the drill database. The data is further visually validated by Widgie Nickel geologists and database staff.
	Discuss any adjustment to assay data	Significant intersections are verified by senior Widgie Nickel geologists. QAQC reports are run and the performance of the laboratory is evaluated periodically by senior Widgie Nickel geologists.
		No drill holes were twinned.
		Oxide Li ₂ O value is calculated by multiplying elemental Li % by a factor of 2.153.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	A handheld GPS has been used to determine the drillhole locations, a handheld GPS is accurate to 2-3m. Drill collars location will be confirmed with a differential GPS (DGPS) for resource estimates. DGPS is accurate to within 0.1 metres.
	Specification of the grid system used	MGA94_51S is the grid system used in this program.
	Quality and adequacy of topographic control	Downhole survey using Reflex Sprint IQ gyro survey equipment was conducted during the program by the drilling contractor.
		Downhole Gyro survey data have been converted from true north to MGA94 Zone51S and saved into the data base. The formulas used are:
		Grid Azimuth = True Azimuth + Grid Convergence.
		Grid Azimuth = Magnetic Azimuth + Magnetic Declination + Grid Convergence.
		The Magnetic Declination and Grid Convergence have been calculated with and accuracy to 1 decimal place using plugins in QGIS.
		Magnetic Declination = 0.8
		Grid Convergence = -0.7
		Topographic control is provided by collar surveys drilled in this campaign, and by either collar survey or historical topographic surveys for historical data. Topographic control is considered adequate.
Data spacing and	Data spacing for reporting of Exploration Results	All RC drill holes were sampled at 1 metre intervals down hole. No sample compositing has occurred.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and	This drilling was carried out over the Trainline prospect at a nominal drill spacing of 40m x 40m. See body of report.
	Ore Reserve estimation procedure(s) and classifications applied.	Minor variation in drill spacing to allow for vegetation preservation.
	Whether sample compositing has been applied	The drill spacing is deemed adequate to establish appropriate geological continuity.

	Section 1 Sampling	Techniques and Data
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Previous drill holes and geological mapping aided in the determination that the interpretated pegmatite veins dip shallowly to the west between -20 and -30°. All subsequent drilling was orientated at -60° towards the east at 090° to gain optimum drill angles orthogonal to the interpretated pegmatite veins.
Sample security	The measures taken to ensure sample security	All RC samples were sent to Intertek Kalgoorlie for sample preparation. Pulps were then sent from Intertek Kalgoorlie to Intertek Perth for assay. Sample security was not considered a significant risk to the project. No specific measures have been taken by Widgie Nickel to ensure sample security beyond the normal chain of custody for a sample submission.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the exploration program was undertaken prior to the drill program by Widgie Nickel geology management. Regular reviews and site visits have been made during the conduct of drill program. Staff and contract geologists have been based on site prior to, during and on completion of the drill and sample program to ensure proper quality control as per the modern mining industry standards.

	Section 2 Reporting of Exploration Results					
Criteria	JORC Code Explanation	Commentary				
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Trainline prospect is located on mining lease M15/102, which is held by Widgie Nickel Ltd wholly owned subsidiary, Mt Edwards Critical Metals Pty Ltd. Estrella Resources Limited (ASX:ESR) holds a royalty of \$0.50 of 75% of each tonne of Lithium bearing ore extracted on M15/102. M15/102 was granted on 01/04/1985 and expires on 10/04/2027.				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There are no known impediments to mining in the area Widgie Nickel has held an interest in M15/102 since July 2021, hence all prior work has been conducted by other parties. The ground has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by Western Mining Corporation. Numerous companies have taken varying interests in the project area since this time. Only minor historical Lithium work in the form of wide spaced soil sampling has been completed on M15/102. Historical exploration results and data quality have been considered during the planning of ongoing exploration on M15/102.				
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at Faraday and Trainline is hosted within lithium-caesium-tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions. The stacked pegmatites veins have intruded the steeply dipping mafic/ultramafic country rock dipping shallowly to the west at 20° and are found to be outcropping in places. The pegmatites widths vary from 1m to 15m in thickness, with greater thicknesses observed within the ultramafic host.				

	Section 2 Reporting of	The pegmatites have a strike length of 800m north-south, are oper at depth.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of	Nineteen (19) RC drillholes were completed. All drillholes have been drilled at a nominal -60° dip at varying azimuth angles. Relevant drillhole information has been tabled in the report including hole ID, drill type, drill collar location, elevation, drilled depth, azimuth, dip and respective tenement number. Appropriate maps, sections and tables are included in the body of the Report.
Data aggregation nethods	the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	No top-cuts have been applied. No metal equivalents have been reported.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	RC drilling is interpreted to have intersected the pegmatite veins a an orthogonal angle. Resulting in estimated down hole widths closely 90-100% resembling the estimated true width of the pegmatite veins. Future diamond drilling is required to determine the actual true width of pegmatite veins. Where reliable structural data can be obtained.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A map of the current drilling program location and tenement relative to the total Mt Edwards project is shown in the report. Cross sections and long sections are shown for several of the drillholes completed.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been reported with all assays reported within the appendices.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics potential deleterious or contaminating substances.	No further exploration data has been collected at this stage.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or large scale step out drilling.	Diamond drilling is planned for metallurgical sampling and structural data.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Infill and extensional RC drilling is required to determine geometry/scale and mineralisation endowment. Maiden mineral resource estimate will be completed for Trainline in tandem with Faraday mineral resource estimate update once all samples are received.