Key Highlights

- Exploration drilling north of the Faraday Lithium Deposit unearths a new near surface lithium prospect Trainline
- At Faraday, 80m step out drilling to the west downdip demonstrates mineralisation continues at depth
- Drill results indicate strong potential to increase lithium Resources[#] at the Mt Edwards Project
- XRD analysis reports spodumene* as the exclusive lithium bearing mineral
- Following submission of the Faraday Mining Proposal offtake discussions are rapidly advancing

Trainline Discovery:

• 23MERC118	and incl.	2m @ 0.86% Li ₂ O from 4m 9m @ 0.82% Li ₂ O from 17m 4m @ 1.19% Li ₂ O from 22m
• 23MERC114		10m @ 0.68% Li ₂ O from 43m
	Incl.	7m @ 0.79% Li ₂ 0 from 43m
• 23MERC113		7m @ 0.61% Li ₂ 0 from 30m
	Incl.	$3m @ 0.94\% Li_2O$ from $30m$
Faraday Extension:		
• 23MERC129		1m @ 0.89% Li ₂ O from 23m

			-
		and	3m @ 0.63% Li ₂ 0 from 92m
٠	23MERC131		3m @ 0.63% Li ₂ 0 from 99m
		Incl.	1m @ 1.20% Li ₂ 0 from 100m
		and	4m @ 0.47% Li ₂ 0 from 105m
٠	23MERC132		2m @ 0.55% Li ₂ 0 from 130m
		and	5m @ 0.69% Li ₂ 0 from 137m
		Incl.	3m @ 0.87% Li₂O from 137m

 $^{\#}$ Maiden Faraday resource 481,000t at 0.59% Li $_2$ O at 0.3% Li $_2$ O cut-off

*XRD mineral identification of 16 samples, identifies spodumene as the exclusive lithium bearing mineral

Managing Director and CEO Mr Steve Norregaard commented:

"Widgie's lithium endowment shows it has exceptional growth potential with wide spaced intercepts at Trainline showing excellent promise in addition to the expanding Faraday deposit. Our next steps will be to infill Trainline and the Faraday down dip extensions.

Ongoing evaluation of offtake partnership options is nearing a logical conclusion, with interest levels high. The Faraday-Trainline Lithium Project has all the hallmarks of a very low-cost development able to be commercialised in the very near term."

Following Widgie Nickel's Ltd (ASX: WIN) ("Widgie" or "the Company") announcement of its maiden Mineral Resource Estimate at the Faraday Lithium Deposit ("Faraday") (refer ASX release dated 29 March 2023), Widgie is pleased to announce the discovery of a new lithium prospect to the north named "Trainline", as well as the definition of additional lithium mineralisation at depth at Faraday.

The Faraday-Trainline Lithium Project area is located on Mining Lease M15/102, 4km west north-west of the Widgiemooltha townsite. Access is via the Coolgardie-Norseman Rd, 63km south of Coolgardie. Faraday and Trainline are central to Widgie's Mt Edwards Project, covering a significant land holding within the "Lithium Corridor" between Mt Marion to the north and Pioneer Dome to the south (Figure 1).

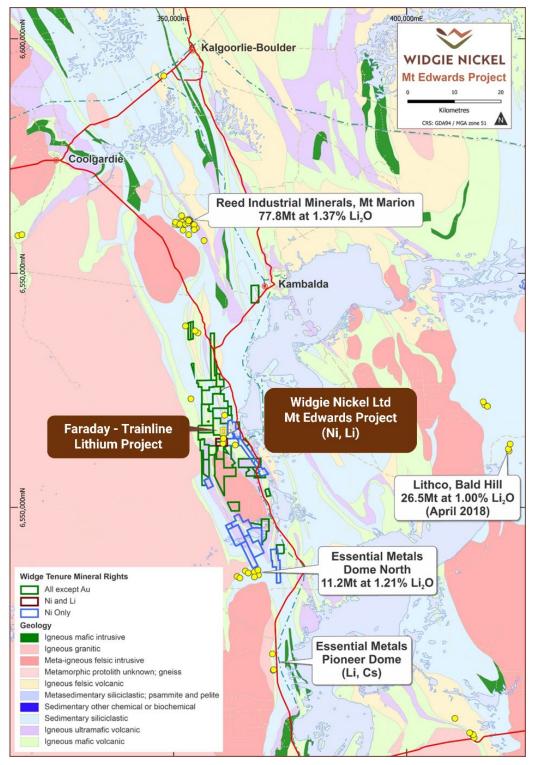


Figure 1 - Regional Geology showing Faraday and Trainline Lithium Project location, and surrounding lithium Projects

The Trainline lithium prospect is located approximately 100m to the north of Faraday as illustrated in Figure 2.

Figure 2 Plan view of Faraday - Trainline Lithium Project. Displaying drill location and cross cutting dolerite intrusive.

Geology and Lithium Mineralisation Interpretation

The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at Faraday-Trainline Project is hosted within Lithium-Caesium-Tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions.

The stacked pegmatites veins have intruded the steeply dipping mafic/ultramafic country rock dipping shallowly to the west at 20° and are found to be outcropping in places. The pegmatites widths vary from 1m to 14m in thickness, with greater thicknesses observed within the ultramafic host. The pegmatites have a strike length of 800m north-south and are open at depth.

Faraday and Trainline have been separated by a late-stage, cross cutting east-west dolerite intrusive that truncates the pegmatite bodies to the north and south as illustrated in Figure 2.

Discussion of Results

This RC exploration drill campaign was completing drilling 80m by 80m step outs, down dip and to the north of Faraday deposit. The down dip extensional drilling has confirmed the continuity of the main Faraday, westly dipping, lithium bearing pegmatite (Figure 4). Despite the thicknesses of the Faraday pegmatite appearing to narrow, the drilling has successfully delineated the continuity of thin, high-grade lithium bearing pegmatite.

Drilling north of the historic Coolgardie to Esperance trainline has delineated a barren dolerite intrusive that truncates the pegmatite body to the north and south. The lithium bearing pegmatite intersected north of the dolerite intrusive has given rise to the new "Trainline" Lithium Prospect which has returned high grade results including $4m \ge 1.19\%$ Li₂O from drill hole 23MERC118 (Figure 5).

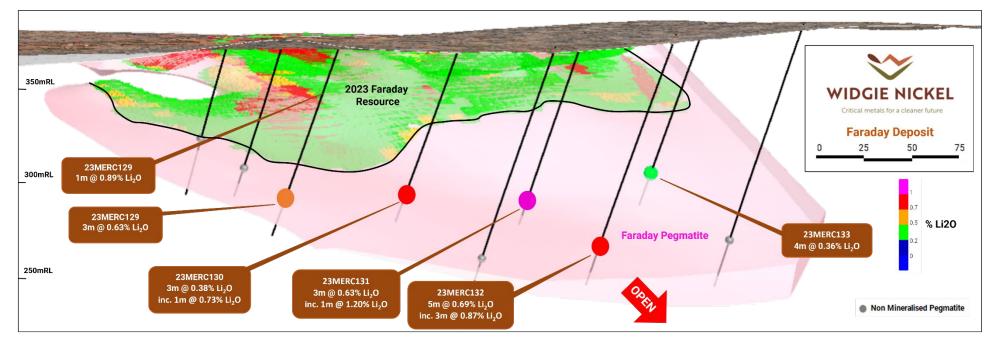


Figure 3 - Faraday Drilling - white sample spoils represent Faraday lithium bearing pegmatite

XRD mineral analysis has identified spodumene as the exclusive lithium bearing mineral at Faraday which lends to excellent metallurgical recoveries and pay-ability. See Table 1 below. The 16 samples selected are spatially representative of the Faraday Deposit. All samples were submitted for XRD mineral analysis at Intertek Genalysis, Maddington WA.

Figure 4 – Faraday resource block model, pegmatite shell (light red) and recent down dip intercepts looking south-east

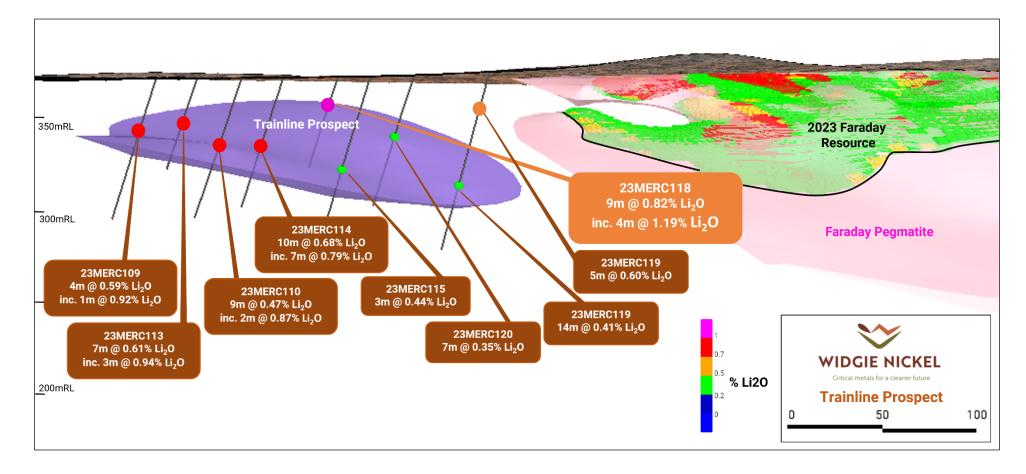


Figure 5 – Trainline Prospect - north of Faraday Lithium Deposit, looking south-east.

Sample name	Amorphous Content	Amphibole	Beryl	Expanding clay	Kaolin	Mica	Potassium Feldspar	Quartz	Sodium Plagioclase	Spodumene	Talc	
Formula		e.g. Ca2(Mg,Fe)5 Si8O22(OH)2	Be3Al2(Si O3)6		Al2Si2O 5(OH)4	K(Al,Mg,Fe)2(Si, Al)4010(OH)2	KAISi308	SiO2	NaAlSi308	LiAl(SiO3)2	Mg3Si40 10(OH)2	Total
Sample ID / Units	%	%	%	%	%	%	%	%	%	%	%	%
M27445	9		<0.5	1	1	6	8	29	23	22		99
M27457	10		<0.5		<0.5	4	11	34	24	17		100
M27471	10	<0.5	<0.5	1	1	4	11	26	34	12		99
M27479	10					10	11	30	27	12		100
M27517	9	<0.5	<0.5			5	12	27	33	13		99
M27523	12		<0.5	1	1	7	12	24	34	9	<0.5	100
M27607	9		<0.5			6	11	28	28	18		100
M27646	8					5	8	27	33	19		100
M27654	11	1	<0.5	1				27	48	12	<0.5	100
M27663	8					7	10	27	37	11		100
M27667	8		<0.5			8	10	28	28	17	<0.5	99
M27685	8		<0.5			8	14	26	30	14	<0.5	100
M27689	10		<0.5			5	12	26	31	16	<0.5	100
M27743	8	<0.5	<0.5			5	11	29	26	21	<0.5	100
M27799	10		<0.5			8	15	30	21	16		100
M27803	8		<0.5		<0.5	8	10	28	16	29		99

Table 1 - Faraday XRD mineral analysis identifying Spodumene as the exclusive lithium bearing mineral

Cross section 6516520mN at Trainline demonstrates the grade continuity and shallow nature of the pegmatites (Figure 6). Trainline covers an area of 200m by 200m with mineralised intercepts within the main pegmatite up to 14m wide (23MERC119) and defined to a vertical depth of 75m (23MERC120).

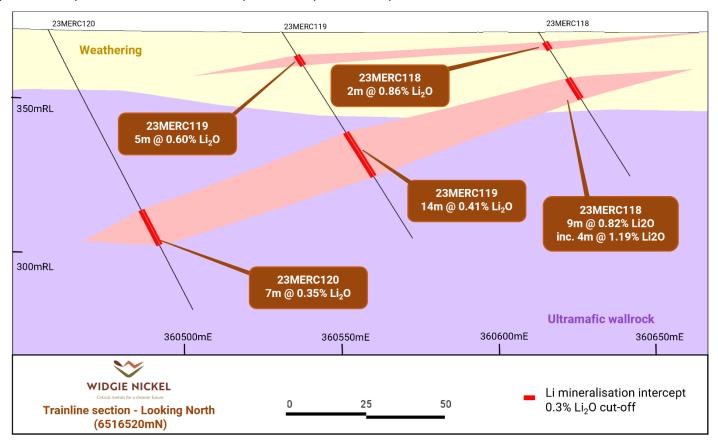


Figure 6 – Cross section 6516520mN, Trainline discovery

Future Work

Further work and infill drilling is required to fully understand the geometry and nature of mineralisation of the LCT pegmatite at Trainline. Additional infill drilling down dip at Faraday is required to expand the boundaries of mineralisation and in turn inform an updated Mineral Resource Estimate with the potential inclusion of additional mineralisation at Trainline.

The Company is nearing the conclusion of offtake discussions and anticipates announcing a successful partnership structure in the near future.

4 July 2023

Drill Results

Table 2 2023 Lithium Drilling M15/102 Drill Intercepts

23MERC106 RC Trainline Exp NSI 23MERC107 RC Trainline Exp NSI 23MERC109 RC Trainline Exp 39.0 43.0 4.0 0.59 incl RC Trainline Exp 41.0 42.0 10.0 0.02 23MERC109 RC Trainline Exp 48.0 50.0 2.0 0.67 23MERC112 RC Trainline Exp 48.0 50.0 2.0 0.67 23MERC112 RC Trainline Exp 30.0 33.0 3.0 0.04 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.70 23MERC115 RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC116 RC Trainline Exp 4.0 6.0 1.0 50.0 1.0 23MERC116 RC Trainline Exp 7.0 0.55					111111119 WIT 3/ TOZ D			
23MERC107 RC Trainline Exp NSI 23MERC109 RC Trainline Exp 39.0 43.0 4.0 0.59 incl. RC Trainline Exp 41.0 42.0 10.0 0.92 23MERC110 RC Trainline Exp 42.0 51.0 9.0 0.47 incl. RC Trainline Exp 48.0 50.0 2.0 0.87 23MERC112 RC Trainline Exp 48.0 53.0 10.0 0.66 incl. RC Trainline Exp 43.0 53.0 10.0 0.66 incl. RC Trainline Exp 43.0 50.0 7.0 0.11 23MERC115 RC Trainline Exp 4.0 6.0 2.0 0.42 23MERC116 RC Trainline Exp 4.0 6.0 2.0 0.42 23MERC118 RC Trainline Exp 4	Hole ID	Drill Type	Prospect	Programme	Depth From (m)	Depth To (m)	DH Width (m)	Li ₂ O (%)
23MERC108 RC Trainline Exp 39.0 43.0 40.0 0.59 23MERC109 RC Trainline Exp 41.0 42.0 10.0 0.02 23MERC110 RC Trainline Exp 42.0 51.0 9.0 0.47 incl. RC Trainline Exp 42.0 51.0 9.0 0.47 23MERC112 RC Trainline Exp 48.0 50.0 2.0 0.87 23MERC112 RC Trainline Exp 30.0 33.0 3.0 0.04 23MERC116 RC Trainline Exp 43.0 53.0 10.0 0.70 23MERC116 RC Trainline Exp 43.0 60.0 3.0 0.44 23MERC116 RC Trainline Exp 4.0 6.0 2.0 0.6 and RC Trainline Exp 17.0 26.0 9.0 0.22 23MERC118								
23MERC109 RC Trainline Exp 39.0 43.0 4.0 0.59 23MERC110 RC Trainline Exp 44.0 51.0 9.0 0.47 incl. RC Trainline Exp 44.0 50.0 2.0 0.87 23MERC111 RC Trainline Exp NSI 2.0 0.87 23MERC113 RC Trainline Exp 30.0 37.0 7.0 0.61 incl. RC Trainline Exp 43.0 53.0 10.0 0.68 incl. RC Trainline Exp 43.0 50.0 7.0 0.70 23MERC115 RC Trainline Exp 4.0 6.0 2.0 0.86 incl. RC Trainline Exp 4.0 6.0 2.0 0.66 and RC Trainline Exp 4.0 6.0 2.0 0.66 and RC Trainline	23MERC107	RC	Trainline	Exp			NSI	
Incl. RC Trainline Exp 41.0 42.0 1.0 9.0 0.47 Incl. RC Trainline Exp 48.0 50.0 2.0 0.87 23MERC112 RC Trainline Exp 48.0 50.0 2.0 0.87 23MERC112 RC Trainline Exp 30.0 37.0 7.0 0.61 1incl. RC Trainline Exp 30.0 33.0 0.94 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.66 incl. RC Trainline Exp 43.0 53.0 10.0 0.44 23MERC117 RC Trainline Exp 4.0 6.0 2.0 0.84 23MERC119 RC Trainline Exp 4.0 6.0 2.0 0.82 23MERC119 RC Trainline Exp 2.0 2.6.0 4.0 1.1 23MERC1218 RC<	23MERC108	RC		Exp			NSI	
23MERC110 RC Trainline Exp 42.0 51.0 9.0 0.47 23MERC111 RC Trainline Exp MSI 23 23MERC112 RC Trainline Exp NSI 23 23MERC113 RC Trainline Exp 30.0 33.0 3.0 0.45 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.66 incl. RC Trainline Exp 43.0 50.0 7.0 0.76 23MERC116 RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC117 RC Trainline Exp 43.0 50.0 7.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.66 and RC Trainline Exp 2.20 2.6.0 4.0 1.19 23MERC121 RC Trainline Exp 6.7.0 7.4	23MERC109	RC		Exp	39.0	43.0	4.0	0.59
Incl. RC Trainline Exp 48.0 50.0 2.0 0.87 23MERC111 RC Trainline Exp NSI 23 23MERC112 RC Trainline Exp 30.0 37.0 7.0 0.61 incl. RC Trainline Exp 30.0 33.0 0.94 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.66 incl. RC Trainline Exp 43.0 53.0 10.0 0.68 23MERC116 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 2.0 26.0 4.0 1.1 23MERC119 RC Trainline Exp 2.0 26.0 4.0 1.1 23MERC119 RC Trainline Exp 2.0 2.6 4.0 1.1 23MERC121 RC Trainline Exp 2.0		RC	Trainline	Exp	41.0		1.0	0.92
23MERC111 RC Trainline Exp NSI 23MERC113 RC Trainline Exp 30.0 37.0 7.0 0.61 Incl. RC Trainline Exp 30.0 33.0 3.0 0.94 23MERC114 RC Trainline Exp 43.0 50.0 7.0 0.76 23MERC115 RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC115 RC Trainline Exp 4.3.0 6.0 2.0 0.86 23MERC117 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 8.0 13.0 5.0 0.60 23MERC121 RC Trainline Exp 8.0 13.0 5.0 0.61 23MERC121 RC Trainline Exp NS1 </td <td>23MERC110</td> <td>RC</td> <td>Trainline</td> <td>Exp</td> <td>42.0</td> <td></td> <td>9.0</td> <td>0.47</td>	23MERC110	RC	Trainline	Exp	42.0		9.0	0.47
23MERC111 RC Trainline Exp NSI 23MERC112 RC Trainline Exp 30.0 37.0 7.0 0.61 Incl. RC Trainline Exp 30.0 33.0 3.0 0.94 23MERC114 RC Trainline Exp 43.0 50.0 7.0 0.74 23MERC115 RC Trainline Exp 43.0 50.0 7.0 0.74 23MERC115 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.80 23MERC1218 RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 8.0 <td< td=""><td>incl.</td><td>RC</td><td>Trainline</td><td>Exp</td><td>48.0</td><td>50.0</td><td>2.0</td><td>0.87</td></td<>	incl.	RC	Trainline	Exp	48.0	50.0	2.0	0.87
23MERC112 RC Trainline Exp 30.0 37.0 7.0 0.61 incl. RC Trainline Exp 30.0 33.0 3.0 0.94 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.68 incl. RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC115 RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC116 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 8.0 13.0 5.0 0.60 23MERC120 RC Trainline Exp 8.0 13.0 5.0 0.0 0.85 23MERC121 RC		RC	Trainline					
23MERC113 RC Trainline Exp 30.0 37.0 7.0 0.61 incl. RC Trainline Exp 30.0 33.0 3.0 0.94 23MERC114 RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC115 RC Trainline Exp 43.0 50.0 7.0 0.70 23MERC116 RC Trainline Exp 0.10 64.0 3.0 0.44 23MERC117 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 67.0 74.0 7.0 0.35 23MERC121 RC Trainline Exp NSI 23MERC122 RC Trainline Exp NSI 23MERC124		RC	Trainline				NSI	
Incl. RC Trainline Exp 30.0 33.0 30.0 0.94 23MERC114 RC Trainline Exp 43.0 53.0 10.0 0.68 incl. RC Trainline Exp 43.0 53.0 7.0 0.79 23MERC116 RC Trainline Exp 61.0 64.0 3.0 0.44 23MERC116 RC Trainline Exp 0.0 0.0 0.0 23MERC119 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 8.0 13.0 5.0 0.0 23MERC119 RC Trainline Exp 8.0 52.0 14.0 0.41 23MERC121 RC Trainline Exp 8.0 52.0 14.0 0.41 23MERC121 RC Trainline Exp NSI 23 23 23 23 23 23 23 <t< td=""><td></td><td></td><td></td><td></td><td>30.0</td><td>37.0</td><td></td><td>0.61</td></t<>					30.0	37.0		0.61
23MERC114 PC Trainline Exp 43.0 53.0 10.0 0.68 incl. RC Trainline Exp 43.0 50.0 7.0 0.79 23MERC115 RC Trainline Exp 61.0 64.0 3.0 0.44 23MERC117 RC Trainline Exp NSI 0.64 23MERC118 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 17.0 26.0 9.0 0.82 incl. RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 8.0 13.0 5.0 0.60 23MERC121 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC124 RC Trainline								
Incl. PC Trainline Exp 43.0 50.0 7.0 0.79 23MERC115 RC Trainline Exp NSI 23MERC118 RC Trainline Exp NSI 23MERC118 RC Trainline Exp NSI 23MERC118 RC Trainline Exp 0.0 0.20 and RC Trainline Exp 22.0 26.0 4.0 119 23MERC119 RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC121 RC Trainline Exp NSI 23MERC122 RC Trainline Exp NSI 23MERC123 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC123 RC Trainline Exp 77.0 79.0 2.0 0.49								
23MERC115 RC Trainline Exp 61.0 64.0 3.0 0.44 23MERC116 RC Trainline Exp NSI 23 23MERC118 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 4.0 6.0 9.0 0.82 incl. RC Trainline Exp 22.0 26.0 4.0 1.19 23MERC119 RC Trainline Exp 8.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 67.0 74.0 7.0 0.35 23MERC122 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC127 RC Trainline Exp NSI 23MERC127 RC Trainline Exp 97.0 100.0 3.0 0.43								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					01.0	04.0		0.44
23MERC118 RC Trainline Exp 4.0 6.0 2.0 0.86 and RC Trainline Exp 17.0 26.0 9.0 0.82 incl. RC Trainline Exp 22.0 26.0 4.0 1.19 23MERC119 RC Trainline Exp 8.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC121 RC Trainline Exp NSI 234ERC123 RC Trainline Exp NSI 23MERC125 RC Trainline Exp NSI 234ERC127 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 92.0 95.0 3.0 0.43 23MERC127 RC Trainline Exp 92.0 95.0 3.0 0.63 23MERC128 RC Trainline Exp 92.0 95.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
and RC Trainline Exp 17.0 26.0 9.0 0.82 incl. RC Trainline Exp 22.0 26.0 4.0 1.19 23MERC119 RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC121 RC Trainline Exp NSI 234 23MERC121 RC Trainline Exp NSI 234 23MERC124 RC Trainline Exp NSI 234 23MERC126 RC Trainline Exp NSI 234 23MERC127 RC Trainline Exp NSI 230 24.0 1.0 0.89 and RC Faraday Exp 97.0 96.0 1.0 0.73 23MERC129 RC Faraday Exp 97.0					10			0.07
incl. RC Trainline Exp 22.0 26.0 4.0 1.19 23MERC119 RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 67.0 74.0 7.0 0.35 23MERC121 RC Trainline Exp NSI 234 RC122 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 234 RC127 RC Trainline Exp NSI 23MERC127 RC Trainline Exp 77.0 79.0 NSI 23MERC127 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC128 RC Faraday Exp 97.0 100.0 3.0 0.63 23MERC128 RC Faraday Exp 97.0								
23MERC119 RC Trainline Exp 8.0 13.0 5.0 0.60 and RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 67.0 74.0 7.0 0.35 23MERC121 RC Trainline Exp NSI 23 23 NSI 23 23MERC123 RC Trainline Exp NSI 23 23 24.0 NSI 23 23 24.0 1.0 0.89 3.0 0.3.0 0.38 3.0 0.3.0 0.38 3.0 0.3.0 0.3.8 3.0 0.3.0 0.3.8 3.0 0.1.0 0.7.0 3.0 0.3.8 3.0 0.1.0 0.7.0 3.0 0.3.8 3.0 0.1.0 1.0 0.3.0 0.3.8 3.					-			
and RC Trainline Exp 38.0 52.0 14.0 0.41 23MERC120 RC Trainline Exp 67.0 74.0 NSI 23MERC121 RC Trainline Exp NSI 123 23MERC122 RC Trainline Exp NSI 123 23MERC124 RC Trainline Exp NSI 123 23MERC125 RC Trainline Exp NSI 123 23MERC127 RC Trainline Exp NSI 123 23MERC128 RC Trainline Exp 23.0 24.0 1.0 0.89 23MERC130 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC131 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday E								
23MERC120 RC Trainline Exp 67.0 74.0 7.0 0.35 23MERC121 RC Trainline Exp NSI NSI 23MERC122 RC Trainline Exp NSI NSI 23MERC123 RC Trainline Exp NSI NSI 23MERC124 RC Trainline Exp NSI NSI 23MERC126 RC Trainline Exp NSI NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.63 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Farad								
23MERC121 RC Trainline Exp NSI 23MERC122 RC Trainline Exp NSI 23MERC123 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC127 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 23.0 24.0 1.0 0.89 and RC Faraday Exp 92.0 95.0 3.0 0.63 incl. RC Faraday Exp 97.0 100.0 3.0 0.63 incl. RC Faraday Exp 97.0 102.0 3.0 0.63 incl. RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC <td></td> <td></td> <td>Trainline</td> <td></td> <td></td> <td>52.0</td> <td></td> <td></td>			Trainline			52.0		
23MERC122 RC Trainline Exp NSI 23MERC123 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC125 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 100.0 101.0 1.0 0.43 incl. RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 140.0 3.0 0					67.0	74.0		0.35
23MERC122 RC Trainline Exp NSI 23MERC123 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC125 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 100.0 101.0 1.0 0.43 incl. RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 140.0 3.0 0	23MERC121	RC	Trainline	Exp			NSI	
23MERC123 RC Trainline Exp NSI 23MERC124 RC Trainline Exp NSI 23MERC125 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC128 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC128 RC Faraday Exp 97.0 98.0 1.0 0.89 and RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 0.73 23MERC132 RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 142.0 5.0 0	23MERC122	RC	Trainline	Exp			NSI	
23MERC124 RC Trainline Exp NSI 23MERC125 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC127 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.63 23MERC131 RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC132 RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 100.	23MERC123	RC	Trainline				NSI	
23MERC125 RC Trainline Exp NSI 23MERC126 RC Trainline Exp NSI 23MERC127 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 and RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC132 RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
23MERC126 RC Trainline Exp NSI 23MERC127 RC Trainline Exp NSI 23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 103.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 103.0 104.0 4.0 0.36 <								
23MERC127 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC128 RC Trainline Exp 23.0 24.0 1.0 0.89 23MERC129 RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 0.73 and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC								
23MERC128 RC Trainline Exp 77.0 79.0 2.0 0.49 23MERC129 RC Faraday Exp 23.0 24.0 1.0 0.89 and RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 97.0 100.0 101.0 1.0 0.73 23MERC131 RC Faraday Exp 100.0 101.0 1.0 0.73 and RC Faraday Exp 100.0 101.0 1.0 0.43 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC133 <								
23MERC129 RC Faraday Exp 23.0 24.0 1.0 0.89 and RC Faraday Exp 92.0 95.0 3.0 0.63 23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 0.73 23MERC132 RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp NSI 23 23 23 23 NSI 23 23 <td></td> <td></td> <td></td> <td></td> <td>77.0</td> <td>79.0</td> <td></td> <td>0.49</td>					77.0	79.0		0.49
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
23MERC130 RC Faraday Exp 97.0 100.0 3.0 0.38 incl. RC Faraday Exp 97.0 98.0 1.0 0.73 23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp 0 NS1 23 23MERC135 RC Trainline Exp NS1 23 10.0 104.0 4.0 0.36 23MERC138								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
23MERC131 RC Faraday Exp 99.0 102.0 3.0 0.63 incl. RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp NSI 102.0 104.0 4.0 0.36 23MERC136 RC Trainline Exp NSI 102.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0								
incl. RC Faraday Exp 100.0 101.0 1.0 1.20 and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp 00.0 104.0 4.0 0.36 23MERC135 RC Faraday Exp NSI 23 23 23 23 NSI 23 23 23 23 NSI 23 23 23 NSI 23 23 NSI 23 23 NSI 23 23 23 NSI 23 23 <								
and RC Faraday Exp 105.0 109.0 4.0 0.47 23MERC132 RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp NSI 23 23 0.87 23MERC135 RC Faraday Exp NSI 0.36 0.36 23MERC136 RC Trainline Exp NSI 0.36 0.36 23MERC138 RC Trainline Exp NSI 0.38 0.38 0.38 0.38 23MERC140 RC Trainline Exp NSI 0.35 0.35 0.35 0.35 23MERC141 RC								
23MERC132 RC Faraday Exp 130.0 132.0 2.0 0.55 and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC135 RC Faraday Exp NSI 23 23 NSI 23 NSI 23 23 NSI 23 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
and RC Faraday Exp 137.0 142.0 5.0 0.69 incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp 0 NSI 0.36 23MERC135 RC Faraday Exp NSI 0.36 23MERC136 RC Trainline Exp NSI 0.36 23MERC138 RC Trainline Exp NSI 0.051 23MERC139 RC Trainline Exp NSI 0.051 23MERC140 RC Trainline Exp NSI 0.035 23MERC141 RC Trainline Exp NSI 0.035 23MERC142 RC Trainline Exp NSI 0.035 23MERC142 RC Trainline Exp NSI 0.035								
incl. RC Faraday Exp 137.0 140.0 3.0 0.87 23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp 0.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp NSI 0.36 23MERC135 RC Faraday Exp NSI 0.36 23MERC136 RC Trainline Exp NSI 0.31 23MERC138 RC Trainline Exp NSI 0.31 23MERC139 RC Trainline Exp NSI 0.35 23MERC140 RC Trainline Exp NSI 0.35 23MERC141 RC Trainline Exp NSI 0.35 23MERC142 RC Trainline Exp NSI 0.35 23MERC143 RC Trainline Exp NSI 0.35 23MERC144			,					
23MERC133 RC Faraday Exp 100.0 104.0 4.0 0.36 23MERC134 RC Faraday Exp NSI NSI								
23MERC134 RC Faraday Exp NSI 23MERC135 RC Faraday Exp NSI 23MERC136 RC Trainline Exp NSI 23MERC136 RC Trainline Exp NSI 23MERC137 RC Trainline Exp NSI 23MERC138 RC Trainline Exp NSI 23MERC139 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp MSI 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC144 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
23MERC135RCFaradayExpNSI23MERC136RCTrainlineExpNSI23MERC137RCTrainlineExpNSI23MERC138RCTrainlineExpNSI23MERC139RCTrainlineExpNSI23MERC140RCTrainlineExpNSI23MERC141RCTrainlineExpNSI23MERC142RCTrainlineExpNSI23MERC143RCTrainlineExpNSI23MERC144RCTrainlineExpNSI23MERC143RCTrainlineExpNSI23MERC144RCTrainlineExpNSI23MERC145RCTrainlineExpS6.02.023MERC145RCTrainlineExpS6.02.023MERC146RCTrainlineExpNSI23MERC147RCTrainlineExpNSI23MERC148RCTrainlineExpNSI23MERC148RCTrainlineExpNSI23MERC149RCTrainlineExpNSI23MERC149RCTrainlineExpNSI23MERC149RCTrainlineExpNSI23MERC150RCTrainlineExpNSI					100.0	104.0		0.36
23MERC136 RC Trainline Exp NSI 23MERC137 RC Trainline Exp NSI 23MERC138 RC Trainline Exp NSI 23MERC138 RC Trainline Exp NSI 23MERC139 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC144 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
23MERC136RCTrainlineExpNSI23MERC137RCTrainlineExpNSI23MERC138RCTrainlineExpNSI23MERC139RCTrainlineExpNSI23MERC140RCTrainlineExpNSI23MERC141RCTrainlineExpNSI23MERC142RCTrainlineExpNSI23MERC143RCTrainlineExp46.048.023MERC143RCTrainlineExpNSI23MERC144RCTrainlineExpNSI23MERC145RCTrainlineExpNSI23MERC145RCTrainlineExp54.056.02.023MERC146RCTrainlineExp61.068.07.00.3623MERC147RCTrainlineExpNSI2323MERC147RCTrainlineExpNSI2323MERC148RCTrainlineExpNSI2323MERC149RCTrainlineExpNSI2.023MERC149RCTrainlineExpNSI2.023MERC149RCTrainlineExpNSI2.023MERC150RCTrainlineExpNSI2.023MERC150RCTrainlineExpNSI2.023MERC150RCTrainlineExpNSI2.0	23MERC135	RC	Faraday	Exp			NSI	
23MERC138 RC Trainline Exp NSI 23MERC139 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 0 0.35 0 0.035 23MERC144 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23 23		RC						
23MERC139 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 0 NSI 0 23MERC144 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23 23 23 23 23 23 23 23 23 23 23 2.0 0.35 <t< td=""><td>23MERC137</td><td>RC</td><td>Trainline</td><td>Exp</td><td></td><td></td><td>NSI</td><td></td></t<>	23MERC137	RC	Trainline	Exp			NSI	
23MERC139 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 0 NSI 0 23MERC144 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23 23 23 23 23 23 23 23 23 23 23 2.0 0.35 <t< td=""><td>23MERC138</td><td>RC</td><td>Trainline</td><td>Exp</td><td></td><td></td><td>NSI</td><td></td></t<>	23MERC138	RC	Trainline	Exp			NSI	
23MERC140 RC Trainline Exp NSI 23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp NSI 1000000000000000000000000000000000000		RC					NSI	
23MERC141 RC Trainline Exp NSI 23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp NSI 23MERC144 RC Trainline Exp NSI 23MERC145 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23MERC147 RC Trainline Exp NSI 23MERC148 RC Trainline Exp NSI 23MERC149 RC Trainline Exp 109.0 111.0 2.0 0.51 23MERC150 RC <td>23MERC140</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	23MERC140							
23MERC142 RC Trainline Exp 46.0 48.0 2.0 0.35 23MERC143 RC Trainline Exp NSI 23MERC143 RC Trainline Exp NSI 23MERC144 RC Trainline Exp NSI 23MERC144 RC Trainline Exp NSI 23MERC145 RC Trainline Exp <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
23MERC143 RC Trainline Exp NSI 23MERC144 RC Trainline Exp NSI 23MERC144 RC Trainline Exp S6.0 2.0 0.45 23MERC145 RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp 0 0.80 7.0 0.36 23MERC146 RC Trainline Exp 0 NSI 0 0.36 23MERC147 RC Trainline Exp NSI 0 0.36 23MERC148 RC Trainline Exp NSI 0 <td></td> <td></td> <td></td> <td></td> <td>46.0</td> <td>48.0</td> <td></td> <td>0.35</td>					46.0	48.0		0.35
23MERC144 RC Trainline Exp NSI 23MERC145 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp 0 0.80 7.0 0.36 23MERC146 RC Trainline Exp NSI 0 0 0.36 23MERC147 RC Trainline Exp NSI 0 0 0.36 23MERC148 RC Trainline Exp NSI 0								5.00
23MERC145 RC Trainline Exp 54.0 56.0 2.0 0.45 and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23MERC147 RC Trainline Exp NSI 23MERC148 RC Trainline Exp NSI 23MERC149 RC Trainline Exp NSI 23MERC150 RC Trainline Exp NSI								-
and RC Trainline Exp 61.0 68.0 7.0 0.36 23MERC146 RC Trainline Exp NSI 23MERC147 RC Trainline Exp NSI 23MERC147 RC Trainline Exp NSI 23MERC148 RC Trainline Exp NSI 23MERC149 RC Trainline Exp 109.0 111.0 2.0 0.51 23MERC150 RC Trainline Exp NSI					54 0	56.0		0.45
23MERC146RCTrainlineExpNSI23MERC147RCTrainlineExpNSI23MERC148RCTrainlineExpNSI23MERC149RCTrainlineExp109.0111.02.00.5123MERC150RCTrainlineExpNSI109.0111.0100.0								
23MERC147RCTrainlineExpNSI23MERC148RCTrainlineExpNSI23MERC149RCTrainlineExp109.0111.02.00.5123MERC150RCTrainlineExpNSINSI					01.0	00.0		0.00
23MERC148 RC Trainline Exp NSI 23MERC149 RC Trainline Exp 109.0 111.0 2.0 0.51 23MERC150 RC Trainline Exp 0.0 111.0 2.0 0.51								
23MERC149 RC Trainline Exp 109.0 111.0 2.0 0.51 23MERC150 RC Trainline Exp NSI NSI								
23MERC150 RC Trainline Exp NSI					100.0	111.0		0.51
					109.0	111.0		0.51
23MERC205 RC Trainline Exp NSI NSI								
	23MERC205	RC	Trainline	Exp			NSI	
23MERC206 RC Trainline Exp NSI								
23MERC207 RC Trainline Exp NSI	23MERC207	RC	Trainline	Exp			NSI	

Significant intercepts above 0.3% Li₂O, in places includes internal dilution to allow for grade continuity.

NSI = no significant intersection

Exp = intercepts outside of 2023 mineralisation wireframe.

Infill = intercepts within the area of the 2023 mineralisation wireframe.

RC = Reverse circulation, DD = Diamond Core

4 July 2023

Drilling Details

Table 3 Collar details for holes reported in this ASX announcement

Hole ID	Prospect	Drill Type	Total Depth (m)	Survey Method	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC106	Faraday	RC	22	RTK_GPS	360769.7	6516188.3	368.6	-59.8	87.2
23MERC107	Faraday	RC	32	RTK_GPS	360689.5	6516189.6	367.1	-59.6	93.5
23MERC108	Faraday	RC	62	RTK_GPS	360611.0	6516186.9	367.1	-60.1	91.1
23MERC109	Faraday	RC	86	RTK_GPS	360529.9	6516183.9	367.1	-60.4	89.1
23MERC110	Faraday	RC	86	RTK_GPS	360449.7	6516183.6	366.8	-59.9	87.9
23MERC111	Faraday	RC	26	RTK_GPS	360767.4	6516103.3	368.7	-59.9	93.2
23MERC112	Faraday	RC	32	RTK_GPS	360690.1	6516108.5	367.3	-59.5	87.2
23MERC113	Faraday	RC	56	RTK_GPS	360609.8	6516103.8	368.2	-60.0	86.9
23MERC114	Faraday	RC	80	RTK_GPS	360528.7	6516103.6	368.2	-60.0	88.6
23MERC115	Faraday	RC	98	RTK_GPS	360447.2	6516103.1	368.4	-60.6	89.8
23MERC116	Faraday	RC	21	RTK_GPS	360773.2	6516020.2	369.9	-60.2	90.4
23MERC117	Faraday	RC	40	RTK_GPS	360694.7	6516010.1	370.0	-60.7	90.4
23MERC118	Faraday	RC	56	RTK_GPS	360607.6	6516015.5	369.7	-59.7	88.4
23MERC119	Faraday	RC	80	RTK_GPS	360529.3	6516020.0	369.6	-60.0	89.0
23MERC120	Faraday	RC	104	RTK_GPS	360457.9	6516020.4	370.5	-66.0	88.9
23MERC121	Faraday	RC	20	RTK_GPS	360687.1	6515936.6	369.5	-59.6	89.8
23MERC122	Faraday	RC	26	RTK_GPS	360645.9	6515937.6	369.9	-59.9	88.4
23MERC123	Faraday	RC	38	RTK_GPS	360607.8	6515939.2	370.2	-61.4	95.8
23MERC124	Faraday	RC	50	RTK_GPS	360529.3	6515938.0	370.9	-60.0	88.7
23MERC125	Faraday	RC	110	RTK_GPS	360408.0	6515943.0	372.4	-60.5	90.6
23MERC126	Faraday	RC	14	RTK_GPS	360689.0	6515821.4	369.9	-59.8	89.1
23MERC127	Faraday	RC	86	RTK_GPS	360501.7	6515864.6	372.8	-65.2	88.0
23MERC128	Faraday	RC	90	RTK_GPS	360452.7	6515865.7	373.6	-63.0	87.5
23MERC129	Faraday	RC	116	RTK_GPS	360407.3	6515863.1	373.6	-59.4	90.3
23MERC130	Faraday	RC	110	RTK_GPS	360409.5	6515781.4	375.4	-60.1	88.2
23MERC131	Faraday	RC	116	RTK_GPS	360406.8	6515702.2	379.0	-59.9	89.9
23MERC132	Faraday	RC	152	RTK_GPS	360327.1	6515703.4	378.9	-59.2	88.8
23MERC133	Faraday	RC	110	RTK_GPS	360412.5	6515618.9	383.2	-60.0	89.2
23MERC134	Faraday	RC	158	RTK_GPS	360326.3	6515620.4	383.7	-60.0	89.2
23MERC135	Faraday	RC	152	RTK_GPS	360326.2	6515783.4	373.2	-60.0	89.2
23MERC136	Faraday	RC	20	RTK_GPS	360805.7	6516261.7	369.4	-60.0	89.2
23MERC137	Faraday	RC	38	RTK_GPS	360726.3	6516257.3	368.7	-60.0	89.2
23MERC138	Faraday	RC	56	RTK_GPS	360650.3	6516265.4	367.7	-60.0	89.2
23MERC139	Faraday	RC	80	RTK_GPS	360565.8	6516256.7	366.4	-60.0	89.2
23MERC140	Faraday	RC	104	RTK_GPS	360490.8	6516261.0	366.6	-60.0	89.2
23MERC141	Faraday	RC	122	RTK_GPS	360403.7	6516260.5	365.9	-60.0	89.2
23MERC142	Faraday	RC	140	RTK_GPS	360327.6	6516263.1	365.5	-60.0	89.2
23MERC143	Faraday	RC	128	RTK_GPS	360246.4	6516263.1	364.9	-60.0	89.2
23MERC144	Faraday	RC	152	RTK_GPS	360338.5	6516185.6	366.9	-60.0	89.2
23MERC145	Faraday	RC	164	RTK_GPS	360252.2	6516174.4	367.4	-60.0	89.2
23MERC146	Faraday	RC	158	RTK_GPS	360327.4	6516096.2	370.2	-59.5	89.7
23MERC147	Faraday	RC	170	RTK_GPS	360247.4	6516102.1	371.2	-59.8	89.6
23MERC148	Faraday	RC	146	RTK_GPS	360403.8	6516022.9	372.7	-60.0	90.1
23MERC149	Faraday	RC	146	RTK_GPS	360330.0	6516017.0	376.0	-59.6	90.1
23MERC150	Faraday	RC	176	RTK_GPS	360243.8	6516022.6	379.5	-59.8	90.3
23MERC205	Faraday	RC	254	RTK_GPS	360166.9	6516028.1	377.1	-59.5	86.2
23MERC206	Faraday	RC	264	RTK_GPS	360081.5	6516023.8	374.7	-59.4	88.6
23MERC207	Faraday	RC	272	RTK_GPS	359995.5	6516027.1	374.1	-58.8	91.6

Survey method RTK_DGPS =Real Time Kinematic Digital Global Positioning System, GP = Handheld Global Positioning System (Garmin GPS)

Competent Person Statement

The information in this announcement that relates to exploration results and sampling techniques is based on and fairly represents information and supporting documentation compiled by Mr William Stewart, who is a full-time employee of Widgie Nickel Limited. Mr Stewart is a member of the Australian Institute of Metallurgy and Mining (member no 224335). Mr Stewart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stewart consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website www.widgienickel.com.au.

Date	Title
08/12/2022	Assays confirm High Grade Lithium discovery at Faraday
09/01/2023	Further Assays Reaffirm High-grade Lithium Discovery at Faraday
14/02/2023	Widgie Fast-tracks Faraday Li ₂ O Deposit for DSO Opportunity
29/03/2023	Maiden Resource Proves Up Faraday DSO Stater Pit Opportunity
08/05/2023	Faraday Mining Proposal Lodged

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Approved by: Board of Widgie Nickel Ltd

-ENDS-

For further details please contact

Steve Norregaard Managing Director <u>steve@widgienickel.com.au</u> 0472 621 529 Media Inquiries: Shane Murphy FTI Consulting <u>shane.murphy@fticonsulting.com</u> 0420 945 291

Table 1 information in accordance with JORC 2012: Mt Edwards Lithium Exploration

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Section 1 Sampling	Techniques and Data			
Criteria	JORC Code Explanation	Commentary			
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	All new data collected from the Faraday and Trainline Lithium Project discussed in this report is in relation to Reverse Circulation (RC) drilling completed at the Faraday and Trainline Lithium Project between 19 March 2023 and 1 May 2023. All RC samples have been acquired at one metre intervals from a chute beneath a cyclone on the RC drill rig. Sample size was then reduced through a cone sample splitter. Two identical sub-samples have been captured in pre-numbered calico bags, with typical masses ranging between 2 and 3.5kg. Care was taken to ensure that both original sub-samples and duplicate sub-samples have been collected representatively, and therefore are of equal quantities. The remainder of the sample (the reject) has been retained in the short term in sample piles at the drill site. All samples were assayed at single metre sample intervals. With sampling of the prospective pegmatite vein and 2-5m into the mafic/ultramafic waste rock host to ensure representative sampling. No other measurement tools related to sampling have been used in the holes for sampling other than directional/orientation survey tools. A sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W.			
Drilling Techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Forty-eight (48) drillholes have been completed and reported in this announcement for 4,819m drilled. The RC rig is a KWL350 with a face sampling auxiliary compressor and booster. Drill rods are 6 metres long and drill bit diameter is 143mm, and hence so is the size of drillhole diameter. Holes have been drilled at a nominal dip angle of -60° with varying azimuth angles to orthogonally intercept the interpreted favourable geological contact zones.			
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The sample recovery is logged by a geologist during drilling, and recoveries have been considered acceptable. With all sampling being dry. Minor sample loss was recognised while sampling the first metre of some drillholes due to very fine grain size of the surface and near- surface material. No relationship between sample recovery and grade has been recognised.			

		- I · I - I - I
Longia -		Techniques and Data
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	All RC drillholes have been geologically logged for lithology, weathering, alteration, and mineralogy. All samples have been logged in the field at the time of drilling and sampling (both quantitatively and qualitatively where viable), with spoil material and sieved rock chips assessed. All RC holes are photographed. The total length of RC drilling as reported is 4,819m.
	The total length and percentage of the relevant intersections logged.	Geochemical analysis of each hole has been correlated back to logged geology for validation.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling was conducted.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The sample preparation technique carried out in the field is considered industry best standard practice and was completed by the geologist.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All samples were dry
		Samples collected at 1 metre intervals from a cyclone-mounted cone splitter to yield a 2 to 3 kg sub-samples, collected in the field, and sent to Intertek Kalgoorlie for receival then sorted and recorded.
		Individual samples were weighed as received and then dried in an oven for up to 12 hours at 105C.
		Samples >3 kg's were riffle split 50:50 and excess discarded. All samples were then pulverised in a LM5 pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks were performed to verify passing was achieved.
		A 300g split was taken at the bowl upon completion of the grind and sent to the next facility for assay. The remainder of the sample (now pulverised) was bagged and retained until further notice.
		For each submitted sample, the remaining sample (material) less the aliquot used for analysis has been retained, with the majority retained and returned to the original calico bag and a nominal 100g portion split into a pulp packet for future reference.
Quality of assay data and laboratory	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Widgie Nickel has established QAQC procedures for all drilling and sampling programs including the use of commercial Certified Reference Material (CRM) as field and laboratory standards, field and laboratory duplicates and blanks.
tests	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Lithium CRM samples have been inserted into the batches by the geologist, at a nominal rate of 5% of the total samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Field duplicate samples have been taken in visibly mineralised zones, at a rate of 2% of total samples.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether	Samples of blank material have been submitted immediately after visibly mineralised zones at a nominal rate of 5% of the total samples.
	the technique is considered partial or total.	Sample size is considered appropriate to the grain size of the material being sampled.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Samples were analysed at Intertek Perth, WA. Individual samples have been assayed for a suite of 21 elements including lithium related analytes as per the laboratory's procedure for a sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for ALR as Pace Cace Fack Li Ma Ma Nh Ph S Si Sa Sa
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	finish for Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W. Internal sample quality control analysis was then conducted on each sample and on the batch by the laboratory.
	1	l

	Section 1 Sampling	Techniques and Data
		Results have been reported to Widgie Nickel in CSV, PDF and SIF formats.
		A detailed QAQC analysis was carried out with all results assessed for repeatability and meeting expected values relevant to lithium and related elements. Any failures or discrepancies were followed up as required.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes	Assay results are provided by the laboratory to Widgie Nickel in CSV, PDF and XLS formats, and then validated and entered into the database managed by an external Database contractor. Backups of the database are stored both in and out of office.
	The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	Assay, Sample ID and logging data are matched and validated using filters in the drill database. The data is further visually validated by Widgie Nickel geologists and database staff.
	Discuss any aujustment to assay uata	Significant intersections are verified by senior Widgie Nickel geologists. QAQC reports are run and the performance of the laboratory is evaluated periodically by senior Widgie Nickel geologists.
		No drill holes were twinned.
		Oxide Li_2O value is calculated by multiplying elemental Li % by a factor of 2.153.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine	A differential GPS (DGPS) has been used to determine the majority of drillhole collar locations, accurate to within 0.1 metres.
	workings and other locations used in Mineral Resource estimation.	MGA94_51S is the grid system used in this program.
	Specification of the grid system used	Downhole survey using Reflex Sprint IQ gyro survey equipment was conducted during the program by the drilling contractor.
	Quality and adequacy of topographic control	Downhole Gyro survey data have been converted from true north to MGA94 Zone51S and saved into the data base. The formulas used are:
		Grid Azimuth = True Azimuth + Grid Convergence.
		Grid Azimuth = Magnetic Azimuth + Magnetic Declination + Grid Convergence.
		The Magnetic Declination and Grid Convergence have been calculated with and accuracy to 1 decimal place using plugins in QGIS.
		Magnetic Declination = 0.8
		Grid Convergence = -0.7
		Topographic control is provided by collar surveys drilled in this campaign, and by either collar survey or historical topographic surveys for historical data. Topographic control is considered adequate.
Data	Data spacing for reporting of Exploration Results	All RC drill holes were sampled at 1 metre intervals down hole. No sample compositing has occurred.
spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and	This drilling was carried out over the Faraday and Trainline Project Prospect at a nominal drill spacing of 80m x 80m. See body of report.
	Ore Reserve estimation procedure(s) and classifications applied.	Minor variation in drill spacing to allow for vegetation preservation.
	Whether sample compositing has been applied	The drill spacing is deemed adequate to establish appropriate geological continuity.

	Section 1 Sampling	Techniques and Data
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Previous drill holes and geological mapping aided in the determination that the interpretated pegmatite veins dip shallowly to the west at - 20°. All subsequent drilling was orientated at -60° towards the east at 090° to gain optimum drill angles orthogonal to the interpretated pegmatite veins.
Sample security	The measures taken to ensure sample security	All RC samples were sent to Intertek Kalgoorlie for sample preparation. Pulps were then sent from Intertek Kalgoorlie to Intertek Perth for assay. Sample security was not considered a significant risk to the project. No specific measures have been taken by Widgie Nickel to ensure sample security beyond the normal chain of custody for a sample submission.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the exploration program was undertaken prior to the drill program by Widgie Nickel geology management. Regular reviews and site visits have been made during the conduct of drill program. Staff and contract geologists have been based on site prior to, during and on completion of the drill and sample program to ensure proper quality control as per the modern mining industry standards.

	Section 2 Reporting of Exploration Results						
Criteria	JORC Code Explanation	Commentary					
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Faraday and Trainline Project is located on mining lease M15/102, which is held by Widgie Nickel Ltd wholly owned subsidiary, Mt Edwards Critical Metals Pty Ltd. Estrella Resources Limited (ASX:ESR) holds a royalty of \$0.50 of 75% of each tonne of Lithium bearing ore extracted on M15/102. M15/102 was granted on 01/04/1985 and expires on 10/04/2027. Any mining at Munda will require a Miscellaneous License for access to the Coolgardie-Norseman Highway, a distance of approximately 5km. There are no known impedimente to mining in the area. 					
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There are no known impediments to mining in the area Widgie Nickel has held an interest in M15/102 since July 2021, hence all prior work has been conducted by other parties. The ground has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by Western Mining Corporation. Numerous companies have taken varying interests in the project area since this time. Only minor historical Lithium work in the form of wide spaced soil sampling has been completed on M15/102. Historical exploration results and data quality have been considered during the planning of ongoing exploration on M15/102. 					
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at Faraday and Trainline is hosted within lithium-caesium-tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions.					

	Section 2 Reporting of	Exploration Results
		The stacked pegmatites veins have intruded the steeply dipping mafic/ultramafic country rock dipping shallowly to the west at 20° and are found to be outcropping in places. The pegmatites widths vary from 1m to 14m in thickness, with greater thicknesses observed within the ultramafic host. The pegmatites have a strike length of 800m north-south, are open at depth.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	 Forty eight (48) RC drillholes were completed. All drillholes have been drilled at a nominal -60° dip at varying azimuth angles. Relevant drillhole information has been tabled in the report including hole ID, drill type, drill collar location, elevation, drilled depth, azimuth, dip and respective tenement number. Appropriate maps, sections and tables are included in the body of the Report.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal	No top-cuts have been applied. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	RC drilling is interpreted to have intersected the pegmatite veins at an orthogonal angle. Resulting in estimated down hole widths closely 80-95% resembling the estimated true width of the pegmatite veins. Future diamond drilling is required to determine the actual true width of pegmatite veins. Where reliable structural data can be obtained.
Diagrams Balanced	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration	A map of the current drilling program location and tenement relative to the total Mt Edwards project is shown in the report. Cross sections and long sections are shown for several of the drillholes completed. All results have been reported with all assays reported within the
reporting	Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	appendices.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics potential deleterious or contaminating substances.	No further exploration data has been collected at this stage.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or large scale step out drilling.	Diamond drilling is planned for metallurgical sampling and structural data.

Section 2 Reporting of Exploration Results	
Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Infill and extensional RC drilling is required to determine geometry/scale and mineralisation endowment