

Highlights

- 375% increase of Faraday-Trainline Lithium Mineral Resources to 1.96Mt @ 0.69% Li₂O^a
- High-grade, near surface zone of 373kt @ 1.00% $\text{Li}_2\text{O}^{\text{b}}$
- Measured and Indicated Mineral Resources total 1.57Mt @ 0.71% $\text{Li}_2\text{O}^{\circ}$
- Mineralisation remains open at depth with the model only defined to a vertical depth of 130m
- Exploration potential remains for repeat stacked pegmatites below the main Faraday and Trainline mineralisation

Managing Director and CEO Mr Steve Norregaard commented "Widgie's lithium endowment is now shown in a true light. With a high-grade core and a significant portion of the resource identified to date lying at less than 60m depth, readily amenable to low-cost open pit exploitation. This is now the beginning of a true growth story as we focus on production in the foreseeable future with a clear mandate to expand our lithium vision for the Company and its future."

Faraday-Trainline Lithium Project MRE Update

Widgie Nickel Ltd (ASX: WIN) ("**Widgie**" or "**the Company**") is pleased to announce the updated Mineral Resource Estimate (MRE) for Faraday coupled with a maiden MRE for the Trainline Lithium Deposit, reported in accordance with the 2012 JORC Code. Cube Consulting completed the MRE which has been reported above a cut-off grade of 0.30% Li₂O to a depth of 310mRL (65m below surface) and 0.50% Li₂O below 310mRL to 250mRL (Table 1).

Deposit	Classification	Tonnes (t)	Li ₂ O (%)	Fe (%)	Li ₂ O (t)
	Measured	550,000	0.75	1.24	4,100
Earadov	Indicated	250,000	0.66	1.73	1,600
Faraday	Inferred	220,000	0.61	2.22	1,400
	Sub Total	1,020,000	0.70	1.57	7,100
	Measured	-	-	-	-
Trainline	Indicated	780,000	0.69	1.59	5,300
	Inferred	160,000	0.63	1.66	1,000
	Sub Total	940,000	0.68	1.60	6,300
	Measured	550,000	0.75	1.24	4,100
Total	Indicated	1,020,000	0.68	1.62	7,000
TULAL	Inferred	390,000	0.62	1.98	2,400
	Total	1,960,000	0.69	1.59	13,500

Table 1: November 2023 Lithium MRE by classification and deposit

Deposit	Classification	Tonnes (t)	Li ₂ O (%)	Fe (%)	Li ₂ O (t)
	Measured	550,000	0.75	1.24	4,100
Faraday	Indicated	250,000	0.66	1.74	1,600
Falauay	Inferred	30,000	0.48	1.93	200
	Sub Total	830,000	0.71	1.41	5,900
	Measured	-	-	-	-
Trainline	Indicated	780,000	0.69	1.59	5,300
Hamune	Inferred	110,000	0.64	1.53	700
	Sub Total	890,000	0.68	1.58	6,100
	Measured	550,000	0.75	1.24	4,100
Total	Indicated	1,020,000	0.68	1.62	7,000
TULAL	Inferred	150,000	0.60	1.63	900
	Total	1,720,000	0.70	1.50	12,000

Table 2: Faraday-Trainline MRE above 0.3% Li₂O and above 310mRL

Table 3: Faraday-Trainline	MRE above 0.5% Li ₂ O and below 310mRL to 250mRL
----------------------------	---

Deposit	Classification	Tonnes (t)	Li ₂ O (%)	Fe (%)	Li ₂ O (t)
	Measured	-	-	-	-
Foredov	Indicated	-	-	-	-
Faraday	Inferred	190,000	0.63	2.27	1,200
	Sub Total	190,000	0.63	2.27	1,200
	Measured	-	-	-	-
Trainline	Indicated	-	-	-	-
Hamune	Inferred	50,000	0.61	1.95	300
	Sub Total	50,000	0.61	1.95	300
	Measured	-	-	-	-
Total	Indicated	-	-	-	-
Total	Inferred	240,000	0.63	2.20	1,500
	Total	240,000	0.63	2.20	1,500

Notes

a) Maiden Resource Proves Up Faraday DSO Stater Pit Opportunity 29/03/2023 Li₂O unit comparison

b) 0.85% Li₂O cut-off

c) Reporting 0.30% Li₂O cut-off grade above 310mRL, 0.5% Li₂O cut-off grade below 310mRL

d) Tonnes and grades have been rounded to reflect the relative uncertainty of the estimate

Table 4 and Figure 1 demonstrates the grade/tonnage relationship for the November 2023 Faraday-Trainline MRE at varying cut-offs.

Table 4: Farada	y-Trainline	MRE Grade	Tonnage al	bove 310mRL

Li ₂ 0% Cut Off Grade	Tonnes	Li₂O%	Li ₂ O (t)
0.3	1,722,800	0.70	12,000
0.4	1,691,900	0.70	11,900
0.5	1,420,000	0.75	10,600
0.6	1,076,500	0.81	8,700
0.7	749,700	0.88	6,600
0.8	474,200	0.96	4,600
0.85	379,900	1.00	3,800
0.9	271,500	1.05	2,900
1.0	149,000	1.13	1,700

Figure 1: Faraday-Trainline Grade Tonnage Curve above 310mRL

Notes

- No depth related RPEEE cut-off grade is applied to the table above
- Tonnes and grades have been rounded to reflect the relative uncertainty of the estimate
- Tonnes and $L_{i_2}O$ grades will not match reported MRE due to RPEEE cut off constraints

The November 2023 Faraday-Trainline MRE was informed by 17,277m of Reverse Circulation(RC) drilling (419 holes) and 460m of diamond drilling (DD) (13 holes) carried out in late 2022 and 2023 (Figure 2), which has allowed for a detailed interpretation of the geology and mineralisation (Figure 4 and Figure 5).

Approximately 1,000kg of representative lithium-bearing diamond core has been collected for variability test-work to determine mineralogy and metallurgical characteristics across the entire deposit, confirming the ability to produce a saleable concentrate with excellent metallurgical recoveries as previously reported¹.

¹ Maiden Resource Proves Up Faraday DSO Starter Pit Opportunity 29/03/2023

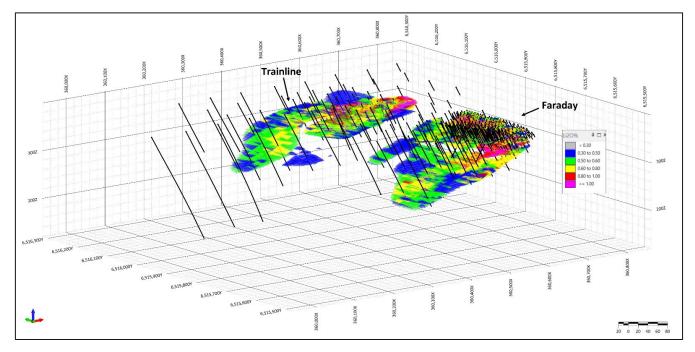


Figure 2: Faraday-Trainline block model displaying Li₂O % and drilling (black traces) – Oblique view looking north-east

ABN 77 648 687 094 Level 4, 220 St Georges Tce Perth. WA 6000

A cut-off grade of 0.30% Li₂O has been chosen to reflect Reasonable Prospects for Eventual Economic Extraction (RPEEE) of the MRE assuming shallow open pit mining above 310mRL. An elevated cut-off grade of 0.50% has been applied to material below 310mRl to the bottom of the mineral resource at a vertical depth of 130m to reflect increased mining costs associated with potential underground mining operation. This is aligned with cut-off grades applied for the reporting of lithium mineral resources hosted in spodumene-rich pegmatites currently being mined elsewhere in Australia.

Faraday-Trainline Lithium Project Location

The Faraday-Trainline Lithium Project area is located on Mining Lease M15/102, 4km west north-west of the Widgiemooltha townsite. Access to the project is via the Coolgardie-Norseman Rd, 63km south of Coolgardie. The Faraday-Trainline Lithium deposits are central to Widgie Nickel's Mt Edwards Project, covering a significant land holding within the "Lithium Corridor" between Mt Marion to the north and Pioneer Dome to the south (Figure 3).

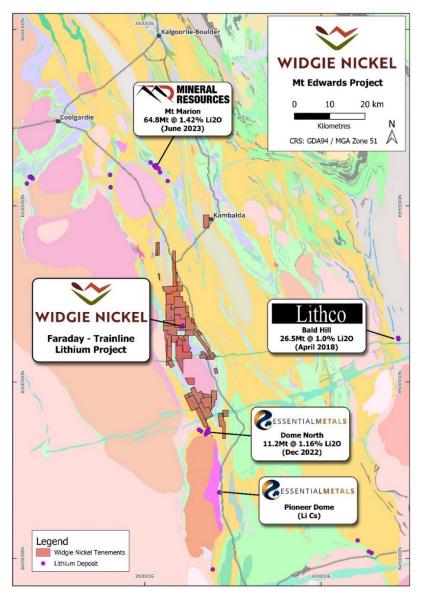
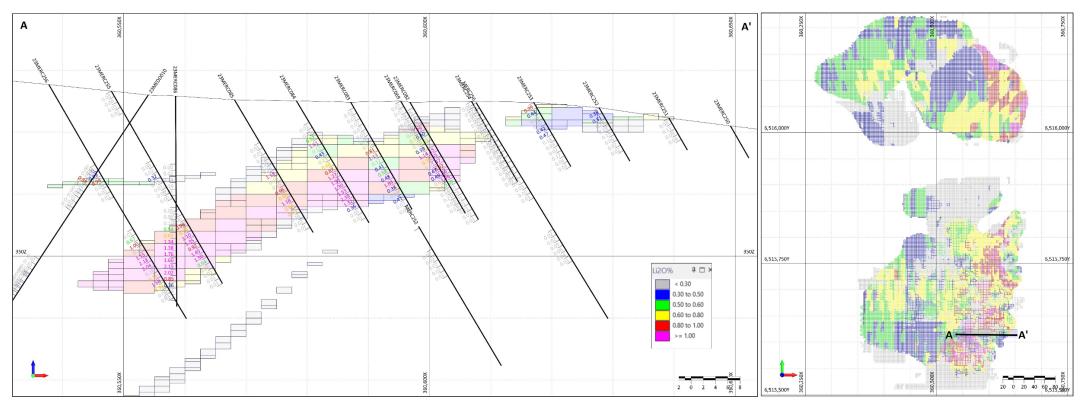



Figure 3: Regional Geology showing Faraday Lithium Project, and surrounding lithium projects.

ABN 77 648 687 094 Level 4, 220 St Georges Tce Perth, WA 6000

PO BOX 7713 Cloisters Square WA 6850 T: +61 8 6381 7250 F: +61 8 6381 7299

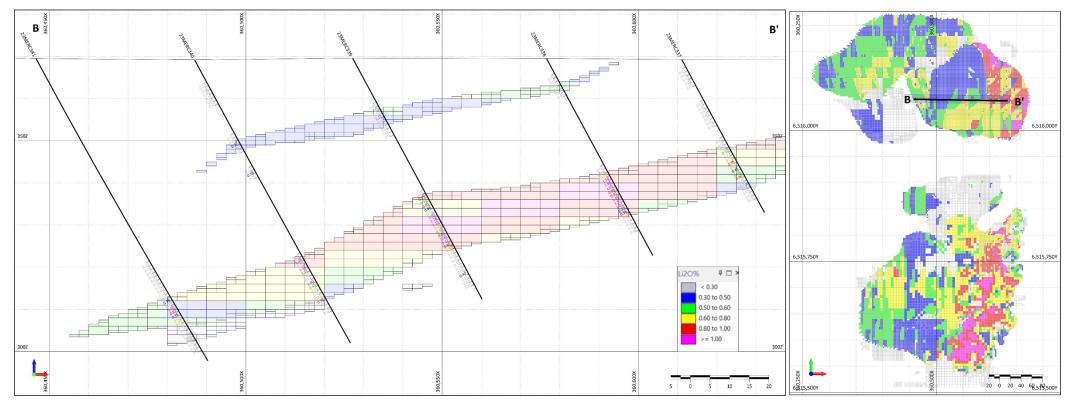


Figure 4: Faraday MRE block model section 6515620mN looking north (left) and plan view section location map (right)

T: +61 8 6381 7250 F: +61 8 6381 7299

Figure 5: Trainline MRE block model section 6516060mN looking north (left) and plan view section location map (right)

Future Exploration and Activities

Future exploration work will focus on defining potential stacked pegmatites at depth within the favourable ultramafic unit below defined mineralisation in addition to extending the known mineralisation down dip to the west.

Infill drilling to 20m x 20m at Trainline to be completed to provide increased level of confidence in the geology and mineral resource.

Desktop studies have commenced on the wider exploration potential for Lithium within Widgie's tenure. This will be a major focus for the exploration team going into 2024.

Variability testing of mineralisation at both deposits to confirm overall metallurgical characteristics is underway to guide the most appropriate processing routes.

Mine design for an expanded operation will now be undertaken to determine ultimate pit limits and an optimised exploitation strategy.

Summary of JORC 2012 Table 1

A summary of JORC Table 1 for the Faraday-Trainline Lithium Project (Included as Appendix 2) is provided below for compliance with the Mineral Resource and in-line with the requirements for ASX listing Rule 5.8.1.

Geology and Mineralisation Interpretation

The tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation is hosted in stacked lithium-caesium-tantalum type (LCT) pegmatites associated with fractionated late-stage granitic intrusions. Faraday and Trainline refer to the southern and northern pegmatite areas respectively, separated by a late-stage, cross cutting east-west dolerite intrusive that truncates the pegmatites bodies.

The stacked pegmatite veins have intruded the steeply dipping mafic/ultramafic country rock and dip shallowly to the west at 15° to 25° and are found to be outcropping in places. Six sets of anastomosing pegmatite veins were interpreted which extend along strike for approximately 750m in a north-south direction with widths varying from 1m up to 23m and an average thickness overall of 6m. The pegmatites are open at depth and currently the pegmatite interpretations extend 380m down dip at Faraday and 540m at Trainline, which approximates to 130m vertically at both areas.

Within the pegmatites, eleven lithium mineralised zones were defined using a nominal cut-off grade of between 0.25 and 0.30% Li_2O . The mineralised domains vary in thickness with an average overall thickness of 4.5m.

Drilling Techniques and Spacing

The drilling database used to define the Mineral Resource comprises 419 RC drillholes for a total of 17,277m, with a total of 8,230 assays, and 13 DD drillholes for a total of 460m (**Table 5**). The diamond holes were only used for density measurements. RC drilling was undertaken using a face-sampling

percussion hammer with a 143mm bit. Diamond core was drilled at either HQ or PQ size for metallurgical and geotechnical purposes.

Drill type	Year	Number of Drillholes	Metres drilled	Assays
DO	2022	18	1,090	485
RC	2023	401	15,727	7,618
	2022	2	61	0
DD	2023	11	399	127
Total		432	17,277	8,230

Table 5: Drilling Faraday-Trainline Lithium Project.
Table 6. Diftang Laraday framano Elanani Fojoota

The Faraday starter pit area has been drilled to 10m x 10m and 20m x 20m immediately to the west. Step out drilling has been drilled at 80m centres down dip to the west. Trainline has been drilled to 80m x 80m with infill drilling of the high-grade core at 40m x 40m (Figure 6).

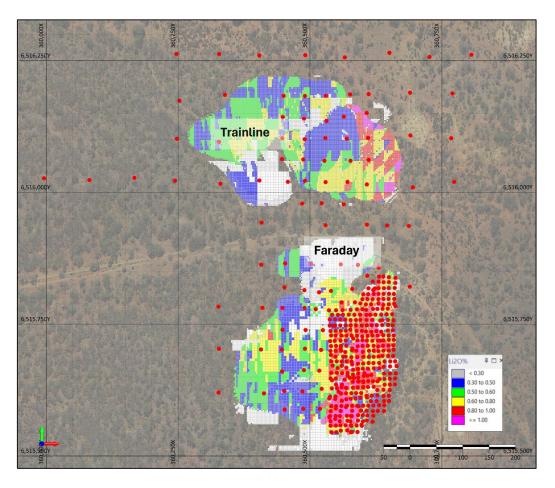


Figure 6: Faraday and Trainline Drill Density (red drill collars) with MRE block model

Sampling Techniques

Samples have been obtained from RC drilling only. All RC drillholes were logged on 1m intervals. RC samples were derived from a cone sample splitter on the rig with an additional two sub-samples were captured at the same time. All samples were recorded as dry. The diamond core was logged in detail, with observations based on lithological boundaries.

Sampling Analysis

RC samples (2 to 3.5kg) were sorted, weighed and dried. Samples greater than 3kg were riffle split and the excess discarded. All samples were then pulverised to -75µm to produce a homogenous representative sub-sample for analysis. Samples for holes MERC241-MERC258 were prepared by Auralia Metallurgy located in Midvale, Western Australia. Samples for holes 23MERC001-23MERC080 were prepared by Intertek in Kalgoorlie, Western Australia.

Holes MERC241-MERC258 were assayed by Nagrom commercial Laboratories located in Kelmscott, Western Australia. 19 elements were assayed via a 2-stage analysis. Peroxide Fusion Digest with ICP-OES finish for Li, B, Be, Cs, Rb. Li Borate fusion with XRF finish for Al, Ba, Ca, Fe, K, Mg, Mn, Nb, P, S, Sn, Sr, Ta, W.

Holes 23MERC001-23MERC080 were assayed by Intertek in Perth, using Inductively Coupled Plasma Optical Emission Spectrometry, following a modified and simplified four acid digest and ICP-OES finish for Li only. It came to the attention of Widgie Staff a discrepancy had resulted between the Fusion and 4-Acid digest methods². This resulted in the 4-Acid method understating the Li₂O grade by up to 63%. As a result, all samples were re-assayed via the sodium peroxide fusion digest with ICP-OES finish. ²Higher grade Lithium to come on the cusp of being shovel ready at Faraday 27/10/2023

Estimation Methodology

Samples were composited for $Li_2O\%$, Cs ppm, Fe%, Nb ppm, Rb ppm and Ta_2O_5 ppm to 1m within each estimation domain using best fit length option and a threshold inclusion of samples at sample length 50% of the targeted composite length. A geostatistical analysis was conducted to determine the influence of any extreme values resulting in very minor top capping applied to Cs ppm, Nb ppm, and Ta_2O_5 ppm.

Variogram modelling was undertaken for the composited data for all domains with sufficient data to produce robust variograms. All variogram models were undertaken by transforming the composite data to Gaussian space, modelling a Gaussian variogram, and then back-transforming the Gaussian models to real space for use in interpolation. For domains with geostatistically insignificant number of data points, variograms models were adopted from the modelled variograms and the orientation modified accordingly.

A Kriging Neighborhood Analysis ("**KNA**") and the domain widths and orientation were used to determine the most appropriate block size and other estimation parameters such as minimum and maximum samples, discretisation, and search distance to be used for the estimation. An estimation block size for the area closely spaced drilling (mostly 10m x 10m) at Faraday was 5m (X) × 5m (Y) × 2m (Z) and for the remaining areas at Faraday and all of Trainline defined by wider spaced drilling the parent block size used was 20m (X) × 20m (Y) × 4m (Z) and for volume resolution, sub-blocking was set to 2.5m (X) × 2.5m (Y) × 0.5m (Z).

Grade estimation used Ordinary Kriging with hard domain boundaries and parameters optimised for each domain based on the variogram models. For Li₂O%, the domain boundaries included the lithiummineralised zones within the pegmatites and also the surrounding poorly mineralised material within each pegmatite. Each of the whole pegmatites represented hard boundaries for the estimation of Cs ppm, Fe%, Nb ppm, Rb ppm and Ta_2O_5 ppm. Dynamic anisotropy ("**DA**") was used for all grade estimates to account for the undulating nature of the pegmatites. The grade estimates used two passes with the first pass search distance of between 50 and 120m and the second pass using three times the

WIDGIE NICKEL Critical metals for a cleaner future

first pass distance. The minimum number of samples was set to six and the maximum number of samples set to 16.

An in-situ density of 2.67 t/m3 was applied to the pegmatites based on 93 determination measurements.

Mineral Resource Classification

8 November 2023

The Faraday-Trainline Project Mineral Resource has been classified as Measured, Indicated and Inferred based on the basis of confidence in geology, mineralogy and grade continuity, consideration of the quality of the sampling and assay data and confidence in the estimation of Li_2O . The area at Faraday defined by 10m x 10m drilling has been classified as Measured and this extends for approximately 300m along strike and 125m down dip. Indicated material at Faraday includes 20m and 40m spaced drilling immediately surround the Measured material. At Trainline, the Indicated material is defined by 40m spaced drilling. At both Faraday and Trainline, Inferred material is defined as 80m spaced drilling and some minor material representing down dip and along strike interpretation extrapolation was not classified based on the lack of supporting data.

Cut-off Grades and Reasonable Prospects of Eventual Economic Extraction (RPEEE)

The Mineral Resource estimate for the Faraday and Trainline Lithium deposits has been reported above a cut-off grade of 0.3% Li₂O above the 310mRL and a cut-off grade of 0.5% Li₂O below the 310mRL. The reporting elevation of 310mRL is approximately 65m below surface and represents the portion of the Mineral Resource that may be considered for eventual economic extraction by open pit methods; no pit constraint has been applied. This cut-off grade is commensurate with cut-off grades applied for reporting of lithium Mineral Resources hosted in spodumene-rich pegmatites elsewhere in Australia. For material below the 310mRL, an elevated reporting cut-off grade of 0.5% Li₂O has been applied and only material displaying sufficient continuity and width that would be typically amenable to underground mining has been included for reporting.

Mining Factors

There has been no historical production from this deposit and no modifying factors were applied to the Mineral Resource. The mineralisation is largely suitable for open-pit mining. The interpreted lithium mineralised pegmatites extend to a maximum of 130m vertically and underground mining maybe be considered where appropriate.

Mineralogy

Cube Consulting has inspected core from hole 23MEDD011, 23MEDD012 and 23MEDD013 at Widgie's core processing premises in Carlisle, Perth. The contacts between country rock and pegmatite were noted to be sharp, and spodumene was visually identified in the core. Other typical LCT pegmatite minerals, such as tourmaline, mica, quartz, plagioclase feldspar and albite were observed.

As previously reported² a spatially representative selection of samples (17) was submitted to Intertek Genalysis Laboratory in Perth, Western Australia, for quantitative XRD mineral analyses to determine Lithium bearing minerals. Spodumene was the only lithium bearing mineral identified within the analysis substantiating field observations.

Samples from several holes were submitted for quantitative XRD mineral analyses. Spodumene was estimated to range between 9 and 29% by mass (Table 6). No other lithium bearing minerals were noted.

Sample ID	Mica %	K Feldspar %	Quartz %	Na Plagioclase %	Spodumene %
M27445	6	8	29	23	22
M27457	4	11	34	24	17
M27471	4	11	26	34	12
M27479	10	11	30	27	12
M27517	5	12	27	33	13
M27523	7	12	24	34	9
M27607	6	11	28	28	18
M27646	5	8	27	33	19
M27654	-	-	27	48	12
M27663	7	10	27	37	11
M27667	8	10	28	28	17
M27685	8	14	26	30	14
M27689	5	12	26	31	16
M27743	5	11	29	26	21
M27799	8	15	30	21	16
M27803	8	10	28	16	29

Table 6: Key minerals identified by XRD

A further 33 samples have been submitted to Intertek Genalysis Laboratory in Perth, Western Australia, for quantitative XRD mineral analyses to determine lithium bearing minerals. Results are pending, albeit the Company expects similar mineral assemblage to that of Faraday based on field observations.

Metallurgical Factors

No further metallurgical test work has been complete. All test-work results have been previously reported^{3,4}.

Heavy liquid separation testing, a proxy for heavy media separation has been carried out on Faraday samples. The results of this initial series of tests confirm that saleable concentrate grades of 5.5-5.75% Li₂O are achievable at metallurgical recoveries of spodumene ranging from 78.4% down to 62.3%¹. Further flowsheet development test work utilising flotation has achieved 81.0% lithium recovery to a 6.3% Li₂O flotation concentrate³.

A further three (3) diamond PQ diameter drill holes (2 holes at Trainline and 1 hole at Faraday) have been drilled for further metallurgical test work to determine lithium recovery via flotation and HLS and variations incorporating both extraction methods. This work has commenced. ³Faraday Metallurgical Testwork-Excellent Flotation Response 02/08/2023 ⁴Faraday Mining Proposal Approved 04/08/2023

Mine Design

Mine design has been completed for a Small Mining Proposal approved by DMIRS in August 2023⁴. A larger scale mine design is now required to sufficiently optimise a significantly larger resource as outlined in this report.

Next Steps for the Faraday Lithium Project

Work remains ongoing with:

- Infill drilling to upgrade geological classification where classification dictates.
- Mine design and scheduling work to determine ultimate pit limits and accompanying site layout.
- Permitting for an expanded mining plan, a revised mining proposal lodgement and completion of accompanying Project Management Plan and closure plan components.
- Metallurgical test work to confirm resource upgrading via varying methodologies i.e. ore to 5.5% Li₂O concentrate and or potential intermediate lower grade products.

Competent Persons Statements:

The information in this report that relates to Mineral Resource for the Faraday-Trainline deposit was prepared by Mr Mark Zammit, who is a full-time employee of Cube Consulting Pty Ltd (Cube) and is a Member of the AIG. Mr Zammit has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is an undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Zammit consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to exploration results and sampling techniques is based on and fairly represents information and supporting documentation compiled by Mr William Stewart, who is a full-time employee of Widgie Nickel Limited. Mr Stewart is a member of the Australian Institute of Metallurgy and Mining (member no 224335) and Australian Institute of Geoscientists (member no 4982). Mr Stewart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Stewart consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

This announcement includes forward-looking statements that are only predictions and are subject to known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of Widgie Nickel Limited, the directors and the Company's management. Such forward-looking statements are not guarantees of future performance.

Examples of forward-looking statements used in this announcement include use of the words 'may', 'could', 'believes', 'estimates', 'targets', 'expects', or 'intend' and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of announcement, are expected to take place.

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules,

Widgie Nickel Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by Widgie Nickel Limited. The document contains background Information about Widgie Nickel Limited current at the date of this announcement. The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular persons.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the fullest extent of the law, Widgie Nickel Limited, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinion, estimates, forecasts or other representations contained in this announcement. No responsibility for any errors or omissions from the announcement arising out of negligence or otherwise is accepted.

Compliance Statement

The information in this report that relates to Exploration Results are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website <u>www.widgienickel.com.au</u>.

Date	Title
08/12/2022	Initial Assays Confirm High Grade Lithium Discovery at Faraday
09/01/2023	Further Assays Reaffirm High-grade Lithium Discovery at Faraday
14/02/2023	Widgie Fast-tracks Faraday Li $_2$ O Deposit for DSO Opportunity
29/03/2023	Maiden Resource Proves Up Faraday DSO Stater Pit Opportunity
08/05/2023	Faraday Mining Proposal Lodged
04/07/2023	New lithium Discoveries Position Widgie for Resource Growth

8 November 2023

Date	Title
02/08/2023	Faraday Metallurgical Testwork-Excellent Flotation Response
04/08/2023	Faraday Mining Proposal Approved
27/09/2023	Higher grade Lithium to come on the cusp of being shovel ready at Faraday
02/10/2023	Drilling Delivers High-grade Lithium at Trainline
26/10/2023	Material Uplift in Faraday Lithium Grades

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Approved by: Board of Widgie Nickel Ltd

-ENDS-

For further details please contact:	Media Enquiries
Steve Norregaard	Steve Kaless
Managing Director	White Noise Communications
steve@widgienickel.com.au	steve@whitenoisecomms.com
0472 621 529	0477 376 227
0472 021 020	0477 070 227

APPENDIX 1: Faraday Drillhole Collar Summary Co-ordinates in MGA (GDA94) Zone 51

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MEDD001	Faraday	DD	28.6	360580	6515702	373	-60.4	87.0
23MEDD002	Faraday	DD	29	360569	6515629	375	-59.8	89.3
23MEDD003	Faraday	DD	23	360601	6515640	375	-59.4	88.5
23MEDD004	Faraday	DD	13.7	360633	6515719	375	-60.1	91.1
23MEDD005	Faraday	DD	22.8	360623	6515818	372	-59.7	88.9
23MEDD006	Faraday	DD	28.6	360591	6515641	375	-60.0	90.0
23MEDD009	Faraday	DD	69.5	360558	6515704	375	-55.6	272.2
23MEDD010	Faraday	DD	65.1	360554	6515622	376	-56.0	269.8
23MEDD011	Trainline	DD	46.9	360574	6516058	369	-60.2	91.4
23MEDD012	Trainline	DD	58.7	360446	6516141	368	-59.7	91.6
23MEDD013	Faraday	DD	13.2	360577	6515576	377	-60.0	90.0
23MERC001	Faraday	RC	16	360620	6515631	375	-59.6	90.5
23MERC002	Faraday	RC	20	360610	6515631	375	-60.2	90.5
23MERC003	Faraday	RC	20	360601	6515631	374	-59.9	90.2
23MERC004	Faraday	RC	30	360590	6515630	375	-60.0	90.0
23MERC005	Faraday	RC	26	360581	6515630	375	-60.5	89.2
23MERC006	Faraday	RC	32	360568	6515629	375	-60.4	88.1
23MERC007	Faraday	RC	44	360541	6515628	377	-60.1	90.4
23MERC008	Faraday	RC	50	360522	6515628	380	-60.0	90.0
23MERC009	Faraday	RC	14	360628	6515642	374	-60.0	89.9
23MERC010	Faraday	RC	14	360619	6515642	374	-59.3	90.2
23MERC011	Faraday	RC	17	360610	6515642	374	-60.0	88.9
23MERC012	Faraday	RC	26	360601	6515642	374	-60.6	90.6
23MERC013	Faraday	RC	29	360592	6515642	374	-60.2	88.6
23MERC014	Faraday	RC	32	360581	6515641	375	-60.6	89.1
23MERC015	Faraday	RC	20	360609	6515652	374	-60.4	85.7
23MERC016	Faraday	RC	25	360602	6515652	374	-60.3	90.7
23MERC017	Faraday	RC	30	360591	6515649	374	-60.2	88.2
23MERC018	Faraday	RC	38	360575	6515648	375	-60.2	90.1
23MERC019	Faraday	RC	41	360565	6515645	375	-60.2	88.2
23MERC020	Faraday	RC	19	360631	6515667	374	-60.0	90.1
23MERC021	Faraday	RC	20	360621	6515666	374	-60.1	88.0
23MERC022	Faraday	RC	23	360610	6515666	374	-60.1	92.7
23MERC023	Faraday	RC	26	360600	6515666	374	-60.9	90.4
23MERC024	Faraday	RC	30	360591	6515665	374	-60.0	90.4
23MERC025	Faraday	RC	35	360582	6515664	374	-60.2	90.7
23MERC026	Faraday	RC	19	360631	6515677	375	-59.8	89.9
23MERC027	Faraday	RC	23	360620	6515677	374	-60.0	90.2
23MERC028	Faraday	RC	24	360611	6515676	374	-60.0	90.7
23MERC029	Faraday	RC	28	360601	6515676	374	-60.3	90.6
23MERC030	Faraday	RC	30	360591	6515675	374	-60.3	90.6
23MERC031	Faraday	RC	32	360580	6515674	374	-60.3	90.6
23MERC032	Faraday	RC	36	360560	6515671	375	-60.3	89.9
23MERC033	Faraday	RC	120	360543	6515672	377	-60.3	89.8
23MERC034	Faraday	RC	23	360620	6515688	374	-60.0	90.3
						1		
23MERC035	Faraday	RC	25	360611	6515688	374	-60.3	89.3

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC037	Faraday	RC	26	360589	6515688	374	-60.0	90.5
23MERC038	Faraday	RC	29	360578	6515688	374	-60.0	90.0
23MERC039	Faraday	RC	35	360563	6515689	375	-60.1	90.9
23MERC040	Faraday	RC	20	360620	6515700	374	-60.0	93.8
23MERC041	Faraday	RC	24	360612	6515700	374	-60.1	90.4
23MERC042	Faraday	RC	30	360600	6515698	373	-60.2	90.6
23MERC043	Faraday	RC	29	360588	6515700	373	-60.1	90.2
23MERC044	Faraday	RC	32	360567	6515697	374	-60.3	90.2
23MERC045	Faraday	RC	20	360620	6515709	374	-60.4	90.4
23MERC046	Faraday	RC	26	360609	6515709	373	-59.9	89.7
23MERC047	Faraday	RC	32	360599	6515709	373	-60.1	90.4
23MERC048	Faraday	RC	32	360582	6515723	373	-60.0	90.8
23MERC049	Faraday	RC	32	360599	6515720	373	-60.0	90.2
23MERC050	Faraday	RC	20	360618	6515719	374	-60.1	90.3
23MERC051	Faraday	RC	20	360629	6515719	374	-60.1	89.6
23MERC052	Faraday	RC	37	360598	6515738	373	-60.2	90.1
23MERC053	Faraday	RC	16	360633	6515757	374	-59.9	92.4
23MERC054	Faraday	RC	24	360618	6515758	373	-60.0	94.0
23MERC055	Faraday	RC	30	360595	6515758	372	-60.1	90.6
23MERC056	Faraday	RC	27	360620	6515815	371	-59.9	90.2
23MERC057	Faraday	RC	42	360580	6515817	371	-60.3	90.1
23MERC058	Faraday	RC	35	360630	6515858	371	-60.2	90.4
23MERC059	Faraday	RC	47	360591	6515863	371	-60.0	90.0
23MERC060	Faraday	RC	50	360558	6515864	372	-60.1	90.0
23MERC061	Faraday	RC	50	360540	6515813	372	-60.1	90.0
23MERC062	Faraday	RC	50	360548	6515570	378	-60.3	90.4
23MERC063	Faraday	RC	15	360608	6515567	373	-60.3	89.7
23MERC064	Faraday	RC	27	360591	6515567	376	-60.1	88.0
23MERC065	Faraday	RC	37	360571	6515567	377	-60.1	90.4
23MERC066	Faraday	RC	21	360592	6515594	375	-60.0	90.1
23MERC067	Faraday	RC	26	360568	6515593	376	-60.1	90.0
23MERC068	Faraday	RC	36	360549	6515590	377	-60.4	89.7
23MERC069	Faraday	RC	21	360595	6515611	375	-59.8	90.4
23MERC079	Faraday	RC	32	360569	6515608	375	-61.2	91.4
23MERC080	Faraday	RC	44	360536	6515609	378	-59.9	87.8
23MERC081	Faraday	RC	20	360577	6515609	375	-60.4	89.9
23MERC082	Faraday	RC	22	360597	6515619	375	-59.4	90.5
23MERC083	Faraday	RC	20	360587	6515619	375	-59.9	89.3
23MERC084	Faraday	RC	23	360578	6515619	375	-58.9	89.9
23MERC085	Faraday	RC	25	360568	6515619	375	-59.0	88.6
23MERC086	Faraday	RC	34	360558	6515619	376	-89.5	139.5
23MERC087	Faraday	RC	32	360559	6515630	376	-60.1	88.6
23MERC088	Faraday	RC	36	360551	6515629	376	-59.5	86.6
23MERC089	Faraday	RC	23	360603	6515657	374	-59.9	88.5
23MERC090	Faraday	RC	27	360591	6515657	374	-60.0	85.5
23MERC091	Faraday	RC	33	360571	6515652	375	-87.7	265.3
23MERC092	Faraday	RC	34	360581	6515654	374	-88.0	354.0
23MERC093	Faraday	RC	16	360630	6515689	375	-60.0	90.2
23MERC094	Faraday	RC	17	360629	6515708	374	-59.9	89.9

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC095	Faraday	RC	23	360590	6515708	373	-59.9	88.2
23MERC096	Faraday	RC	23	360608	6515719	373	-59.9	89.5
23MERC097	Faraday	RC	20	360628	6515729	374	-59.9	89.3
23MERC098	Faraday	RC	18	360618	6515729	374	-59.7	87.8
23MERC099	Faraday	RC	21	360609	6515728	373	-60.4	88.5
23MERC100	Faraday	RC	25	360599	6515727	373	-59.9	88.0
23MERC101	Faraday	RC	29	360590	6515720	373	-60.1	89.8
23MERC102	Faraday	RC	16	360626	6515737	374	-59.0	88.0
23MERC103	Faraday	RC	22	360606	6515737	373	-60.1	86.3
23MERC104	Faraday	RC	24	360631	6515841	371	-59.9	90.6
23MERC105	Faraday	RC	32	360608	6515842	371	-60.0	88.9
23MERC106	Trainline	RC	22	360770	6516188	369	-59.8	87.9
23MERC107	Trainline	RC	32	360689	6516190	367	-59.6	94.3
23MERC108	Trainline	RC	62	360611	6516187	367	-60.1	91.9
23MERC109	Trainline	RC	86	360530	6516184	367	-60.4	89.9
23MERC110	Trainline	RC	86	360450	6516184	367	-59.9	88.7
23MERC111	Trainline	RC	26	360767	6516103	369	-59.9	94.0
23MERC112	Trainline	RC	32	360690	6516109	367	-59.5	88.0
23MERC113	Trainline	RC	56	360610	6516104	368	-60.0	87.7
23MERC114	Trainline	RC	80	360529	6516104	368	-60.0	89.4
23MERC115	Trainline	RC	98	360447	6516103	368	-60.6	90.6
23MERC116	Trainline	RC	21	360773	6516020	370	-60.2	91.2
23MERC117	Trainline	RC	30	360695	6516010	370	-60.7	91.2
23MERC118	Trainline	RC	56	360608	6516015	370	-59.7	89.2
23MERC119	Trainline	RC	80	360529	6516020	370	-60.0	89.8
23MERC120	Trainline	RC	104	360458	6516020	370	-66.0	89.7
23MERC121	Trainline	RC	20	360687	6515937	370	-59.6	90.5
23MERC122	Trainline	RC	26	360646	6515938	370	-59.9	89.2
23MERC123	Trainline	RC	38	360608	6515939	370	-61.4	96.6
23MERC124	Trainline	RC	50	360529	6515938	371	-60.0	89.5
23MERC125	Trainline	RC	110	360408	6515943	372	-60.5	91.3
23MERC126	Faraday	RC	14	360689	6515821	370	-59.8	89.9
23MERC127	Faraday	RC	86	360502	6515865	373	-65.2	88.8
23MERC128	Faraday	RC	90	360453	6515866	374	-63.0	88.3
23MERC129	Faraday	RC	116	360407	6515863	374	-59.4	91.1
23MERC130	Faraday	RC	110	360409	6515781	375	-60.1	89.0
23MERC131	Faraday	RC	116	360407	6515702	379	-59.9	90.7
23MERC132	Faraday	RC	152	360327	6515703	379	-59.2	89.5
23MERC133	Faraday	RC	110	360412	6515619	383	-60.0	90.0
23MERC134	Faraday	RC	158	360326	6515620	384	-60.0	90.0
23MERC135	Faraday	RC	152	360326	6515783	373	-60.0	90.0
23MERC136	Trainline	RC	20	360806	6516262	369	-60.0	90.0
23MERC137	Trainline	RC	38	360726	6516257	369	-60.0	90.0
23MERC138	Trainline	RC	56	360650	6516265	368	-60.0	90.0
23MERC139	Trainline	RC	80	360566	6516257	366	-60.0	90.0
23MERC140	Trainline	RC	104	360491	6516261	367	-60.0	90.0
23MERC141	Trainline	RC	122	360404	6516261	366	-60.0	90.0
23MERC142	Trainline	RC	140	360328	6516263	366	-60.0	90.0
23MERC143	Trainline	RC	128	360246	6516263	365	-60.0	90.0

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC144	Trainline	RC	152	360339	6516186	367	-60.0	90.0
23MERC145	Trainline	RC	164	360252	6516174	367	-60.0	90.0
23MERC146	Trainline	RC	158	360327	6516096	370	-59.5	90.5
23MERC147	Trainline	RC	170	360247	6516102	371	-59.8	90.4
23MERC148	Trainline	RC	146	360404	6516023	373	-60.0	90.9
23MERC149	Trainline	RC	146	360330	6516017	376	-59.6	90.9
23MERC150	Trainline	RC	176	360244	6516023	379	-59.8	91.1
23MERC151	Faraday	RC	24	360615	6515788	372	-60.0	90.7
23MERC152	Faraday	RC	28	360606	6515788	372	-60.3	90.0
23MERC153	Faraday	RC	30	360595	6515790	372	-59.5	89.5
23MERC154	Faraday	RC	32	360585	6515792	372	-60.2	90.9
23MERC155	Faraday	RC	18	360637	6515779	374	-58.7	91.5
23MERC156	Faraday	RC	12	360647	6515780	373	-59.1	90.1
23MERC157	Faraday	RC	18	360628	6515779	373	-59.7	89.9
23MERC158	Faraday	RC	24	360619	6515779	373	-59.5	91.4
23MERC159	Faraday	RC	27	360599	6515779	372	-59.5	89.1
23MERC160	Faraday	RC	30	360589	6515778	372	-58.9	89.6
23MERC161	Faraday	RC	12	360656	6515769	373	-59.4	90.7
23MERC162	Faraday	RC	12	360645	6515769	374	-59.9	88.2
23MERC163	Faraday	RC	14	360635	6515768	374	-59.8	90.5
23MERC164	Faraday	RC	18	360624	6515768	374	-59.9	91.2
23MERC165	Faraday	RC	20	360614	6515768	373	-58.7	93.0
23MERC166	Faraday	RC	22	360607	6515768	373	-59.2	88.8
23MERC167	Faraday	RC	28	360595	6515768	372	-59.9	87.5
23MERC168	Faraday	RC	32	360584	6515768	372	-60.0	89.3
23MERC169	Faraday	RC	36	360573	6515768	372	-59.3	90.2
23MERC170	Faraday	RC	40	360562	6515768	372	-59.8	92.9
23MERC171	Faraday	RC	44	360553	6515768	373	-59.8	89.0
23MERC172	Faraday	RC	47	360542	6515768	373	-59.9	89.4
23MERC173	Faraday	RC	8	360658	6515758	374	-59.4	89.0
23MERC174	Faraday	RC	12	360648	6515758	374	-60.0	89.7
23MERC175	Faraday	RC	12	360637	6515758	374	-58.9	89.8
23MERC176	Faraday	RC	22	360607	6515758	373	-59.7	90.8
23MERC177	Faraday	RC	30	360587	6515758	372	-59.9	90.7
23MERC178	Faraday	RC	33	360577	6515758	373	-59.9	89.7
23MERC179	Faraday	RC	37	360567	6515759	373	-59.9	89.3
23MERC180	Faraday	RC	40	360557	6515759	373	-59.6	92.3
23MERC181	Faraday	RC	43	360547	6515759	373	-60.2	91.6
23MERC182	Faraday	RC	48	360537	6515759	374	-60.2	89.3
23MERC183	Faraday	RC	12	360656	6515748	374	-60.1	94.5
23MERC184	Faraday	RC	12	360648	6515749	375	-59.4	91.8
23MERC185	Faraday	RC	12	360637	6515749	374	-59.7	90.4
23MERC186	Faraday	RC	15	360626	6515748	374	-60.2	90.2
23MERC187	Faraday	RC	18	360617	6515748	373	-59.1	90.4
23MERC188	Faraday	RC	21	360607	6515748	373	-59.4	89.0
23MERC189	Faraday	RC	24	360598	6515748	373	-59.8	92.8
23MERC190	Faraday	RC	30	360587	6515748	373	-59.1	91.9
23MERC191	Faraday	RC	34	360577	6515748	373	-59.2	89.0
23MERC192	Faraday	RC	37	360567	6515748	373	-59.8	89.5

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC193	Faraday	RC	38	360557	6515748	373	-59.4	92.1
23MERC194	Faraday	RC	42	360547	6515748	373	-59.7	90.2
23MERC195	Faraday	RC	48	360537	6515747	374	-59.1	91.3
23MERC196	Faraday	RC	9	360590	6515546	376	-59.6	90.5
23MERC197	Faraday	RC	12	360579	6515546	377	-59.0	89.3
23MERC198	Faraday	RC	15	360570	6515549	377	-59.2	90.3
23MERC199	Faraday	RC	36	360558	6515548	378	-59.0	88.7
23MERC200	Faraday	RC	30	360549	6515545	378	-60.2	92.1
23MERC201	Faraday	RC	35	360541	6515545	379	-60.4	90.2
23MERC202	Faraday	RC	10	360598	6515557	375	-58.4	85.2
23MERC203	Faraday	RC	12	360588	6515558	376	-58.4	85.2
23MERC204	Faraday	RC	12	360579	6515557	377	-59.7	87.3
23MERC205	Trainline	RC	254	360167	6516028	377	-59.5	87.0
23MERC206	Trainline	RC	254	360081	6516024	375	-59.4	89.4
23MERC207	Trainline	RC	272	359995	6516027	374	-58.8	92.4
23MERC208	Faraday	RC	15	360567	6515558	377	-60.0	90.0
23MERC209	Faraday	RC	38	360558	6515558	378	-60.0	90.0
23MERC210	Faraday	RC	34	360549	6515558	378	-60.0	90.0
23MERC211	Faraday	RC	40	360539	6515558	379	-60.0	90.0
23MERC212	Faraday	RC	7	360618	6515565	372	-60.0	90.0
23MERC213	Faraday	RC	14	360600	6515565	374	-60.0	90.0
23MERC214	Faraday	RC	14	360576	6515566	377	-60.0	90.0
23MERC215	Faraday	RC	42	360556	6515566	378	-60.0	90.0
23MERC216	Faraday	RC	37	360539	6515566	378	-60.0	90.0
23MERC217	Faraday	RC	7	360620	6515576	373	-60.0	92.0
23MERC218	Faraday	RC	12	360608	6515577	374	-60.0	90.0
23MERC219	Faraday	RC	16	360600	6515577	375	-60.0	90.0
23MERC220	Faraday	RC	15	360591	6515577	376	-60.0	90.0
23MERC221	Faraday	RC	15	360579	6515576	377	-60.0	90.0
23MERC222	Faraday	RC	19	360570	6515576	377	-60.0	90.0
23MERC223	Faraday	RC	25	360556	6515576	377	-60.0	90.0
23MERC224	Faraday	RC	32	360548	6515576	377	-58.7	90.0
23MERC225	Faraday	RC	37	360538	6515576	378	-60.0	90.0
23MERC226	Faraday	RC	7	360640	6515585	371	-60.0	90.0
23MERC227	Faraday	RC	6	360628	6515585	372	-60.0	90.0
23MERC228	Faraday	RC	8	360619	6515585	373	-60.0	90.0
23MERC229	Faraday	RC	14	360607	6515586	375	-60.0	90.0
23MERC230	Faraday	RC	18	360596	6515586	375	-60.0	90.0
23MERC231	Faraday	RC	17	360580	6515586	376	-60.0	90.0
23MERC232	Faraday	RC	28	360558	6515585	377	-60.0	90.0
23MERC233	Faraday	RC	38	360539	6515585	378	-60.0	90.0
23MERC234	Faraday	RC	8	360641	6515596	371	-60.0	90.0
23MERC235	Faraday	RC	6	360631	6515597	373	-60.0	90.0
23MERC236	Faraday	RC	9	360620	6515596	374	-60.0	90.0
23MERC237	Faraday	RC	13	360610	6515596	375	-60.0	90.0
23MERC238	Faraday	RC	20	360601	6515596	375	-60.0	90.0
23MERC239	Faraday	RC	21	360589	6515595	375	-60.0	90.0
23MERC240	Faraday	RC	20	360580	6515595	376	-60.0	90.0
23MERC241	Faraday	RC	23	360570	6515595	376	-60.0	90.0

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC242	Faraday	RC	30	360559	6515595	376	-60.0	90.0
23MERC243	Faraday	RC	33	360549	6515595	377	-60.0	90.0
23MERC244	Faraday	RC	38	360540	6515595	378	-60.0	90.0
23MERC245	Faraday	RC	8	360650	6515604	370	-60.0	90.0
23MERC246	Faraday	RC	8	360640	6515604	371	-60.0	90.0
23MERC247	Faraday	RC	8	360626	6515604	374	-60.0	90.0
23MERC248	Faraday	RC	12	360615	6515604	375	-60.0	90.0
23MERC249	Faraday	RC	28	360560	6515605	376	-60.0	90.0
23MERC250	Faraday	RC	6	360649	6515614	371	-60.0	90.0
23MERC251	Faraday	RC	6	360639	6515614	372	-60.0	90.0
23MERC252	Faraday	RC	10	360628	6515615	374	-60.0	90.0
23MERC253	Faraday	RC	12	360617	6515615	375	-60.0	90.0
23MERC254	Faraday	RC	15	360607	6515614	375	-60.0	90.0
23MERC255	Faraday	RC	36	360548	6515613	377	-60.0	90.0
23MERC256	Faraday	RC	44	360538	6515613	378	-60.0	90.0
23MERC257	Faraday	RC	8	360651	6515625	371	-60.0	90.0
23MERC258	Faraday	RC	10	360639	6515626	373	-60.0	90.0
23MERC259	Faraday	RC	12	360627	6515625	375	-60.0	90.0
23MERC260	Faraday	RC	6	360661	6515636	371	-60.0	90.0
23MERC261	Faraday	RC	8	360651	6515636	372	-60.0	90.0
23MERC262	Faraday	RC	10	360641	6515635	373	-60.0	90.0
23MERC263	Faraday	RC	36	360560	6515636	376	-60.0	90.0
23MERC264	Faraday	RC	40	360549	6515636	377	-60.0	90.0
23MERC265	Faraday	RC	6	360661	6515647	371	-60.0	90.0
23MERC266	Faraday	RC	8	360651	6515647	372	-60.0	90.0
23MERC267	Faraday	RC	10	360641	6515646	373	-60.0	90.0
23MERC268	Faraday	RC	14	360632	6515646	374	-60.0	90.0
23MERC269	Faraday	RC	41	360549	6515647	377	-60.0	90.0
23MERC270	Faraday	RC	48	360539	6515647	377	-60.0	90.0
23MERC271	Faraday	RC	6	360662	6515657	372	-60.0	90.0
23MERC272	Faraday	RC	10	360651	6515657	373	-60.0	90.0
23MERC273	Faraday	RC	14	360640	6515656	374	-60.0	90.0
23MERC274	Faraday	RC	44	360571	6515657	375	-60.0	90.0
23MERC275	Faraday	RC	42	360561	6515657	376	-60.0	90.0
23MERC276	Faraday	RC	42	360551	6515658	376	-60.0	90.0
23MERC277	Faraday	RC	48	360540	6515658	377	-60.0	90.0
23MERC278	Faraday	RC	6	360664	6515671	372	-60.0	90.0
23MERC279	Faraday	RC	10	360652	6515670	374	-60.0	90.0
23MERC280	Faraday	RC	14	360639	6515670	375	-60.0	90.0
23MERC281	Faraday	RC	36	360569	6515668	375	-60.0	90.0
23MERC282	Faraday	RC	42	360552	6515667	376	-60.0	90.0
23MERC283	Faraday	RC	6	360661	6515680	373	-60.0	90.0
23MERC284	Faraday	RC	10	360652	6515680	375	-60.0	90.0
23MERC285	Faraday	RC	14	360641	6515679	375	-60.0	90.0
23MERC286	Faraday	RC	30	360579	6515679	374	-60.0	90.0
23MERC287	Faraday	RC	30	360569	6515679	375	-60.0	90.0
23MERC288	Faraday	RC	33	360560	6515679	375	-60.0	90.0
23MERC289	Faraday	RC	40	360550	6515680	376	-60.0	90.0
23MERC290	Faraday	RC	46	360540	6515680	377	-60.0	90.0

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC291	Faraday	RC	9	360657	6515690	375	-60.0	90.0
23MERC292	Faraday	RC	11	360648	6515690	375	-60.0	90.0
23MERC293	Faraday	RC	15	360637	6515690	375	-60.0	90.0
23MERC294	Faraday	RC	30	360567	6515689	375	-60.0	90.0
23MERC295	Faraday	RC	43	360548	6515688	376	-60.0	90.0
23MERC296	Faraday	RC	9	360649	6515700	375	-60.0	90.0
23MERC297	Faraday	RC	12	360639	6515700	375	-60.0	90.0
23MERC298	Faraday	RC	36	360559	6515700	375	-60.0	90.0
23MERC299	Faraday	RC	40	360549	6515699	375	-60.0	90.0
23MERC300	Faraday	RC	48	360539	6515699	376	-60.0	90.0
23MERC301	Faraday	RC	10	360648	6515709	375	-60.0	90.0
23MERC302	Faraday	RC	12	360638	6515709	375	-60.0	90.0
23MERC303	Faraday	RC	33	360569	6515709	374	-60.0	90.0
23MERC304	Faraday	RC	37	360558	6515709	375	-60.0	90.0
23MERC305	Faraday	RC	42	360549	6515709	375	-60.0	90.0
23MERC306	Faraday	RC	48	360540	6515709	376	-60.0	90.0
23MERC307	Faraday	RC	8	360658	6515721	375	-60.0	90.0
23MERC308	Faraday	RC	10	360649	6515720	375	-60.0	90.0
23MERC309	Faraday	RC	14	360639	6515720	375	-60.0	90.0
23MERC310	Faraday	RC	36	360567	6515719	374	-60.0	90.0
23MERC311	Faraday	RC	38	360558	6515719	374	-60.0	90.0
23MERC312	Faraday	RC	45	360547	6515719	375	-60.0	90.0
23MERC313	Faraday	RC	50	360538	6515718	375	-60.0	90.0
23MERC314	Faraday	RC	9	360658	6515729	375	-60.0	90.0
23MERC315	Faraday	RC	10	360649	6515729	375	-60.0	90.0
23MERC316	Faraday	RC	15	360639	6515729	375	-60.0	90.0
23MERC317	Faraday	RC	30	360589	6515728	373	-60.0	90.0
23MERC318	Faraday	RC	33	360579	6515728	373	-60.0	90.0
23MERC319	Faraday	RC	36	360569	6515729	373	-60.0	90.0
23MERC320	Faraday	RC	40	360559	6515729	374	-60.0	90.0
23MERC321	Faraday	RC	42	360548	6515729	374	-60.0	90.0
23MERC322	Faraday	RC	48	360540	6515729	375	-60.0	90.0
23MERC323	Faraday	RC	10	360657	6515738	375	-60.0	90.0
23MERC324	Faraday	RC	11	360647	6515738	375	-60.0	90.0
23MERC325	Faraday	RC	29	360588	6515738	373	-60.0	90.0
23MERC326	Faraday	RC	35	360568	6515738	373	-60.0	90.0
23MERC327	Faraday	RC	36	360558	6515738	373	-60.0	90.0
23MERC328	Faraday	RC	42	360548	6515737	374	-60.0	90.0
23MERC329	Faraday	RC	44	360539	6515737	374	-60.0	90.0
23MERC330	Trainline	RC	54	360576	6516186	367	-60.0	90.0
23MERC331	Trainline	RC	54	360490	6516183	368	-60.0	90.0
23MERC332	Trainline	RC	54	360607	6516151	368	-60.0	90.0
23MERC333	Trainline	RC	66	360564	6516144	368	-60.0	90.0
23MERC334	Trainline	RC	66	360531	6516136	369	-60.0	90.0
23MERC335	Trainline	RC	72	360488	6516141	368	-60.0	90.0
23MERC336	Trainline	RC	72	360448	6516143	368	-60.0	90.0
23MERC337	Trainline	RC	42	360611	6516062	369	-60.0	90.0
23MERC338	Trainline	RC	54	360577	6516060	369	-60.0	90.0
23MERC339	Trainline	RC	66	360527	6516060	370	-60.0	90.0

Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC340	Trainline	RC	78	360487	6516063	369	-60.0	90.0
23MERC341	Trainline	RC	84	360447	6516064	369	-60.0	90.0
23MERC342	Trainline	RC	72	360490	6516101	368	-60.0	90.0
23MERC343	Faraday	RC	14	360649	6515788	373	-60.0	90.0
23MERC344	Faraday	RC	16	360639	6515787	373	-60.0	90.0
23MERC345	Faraday	RC	20	360629	6515790	373	-60.0	90.0
23MERC346	Faraday	RC	14	360649	6515798	373	-60.0	90.0
23MERC347	Faraday	RC	17	360639	6515798	373	-60.0	90.0
23MERC348	Faraday	RC	20	360629	6515798	372	-60.0	90.0
23MERC349	Faraday	RC	26	360618	6515798	372	-60.0	90.0
23MERC350	Faraday	RC	28	360609	6515798	372	-60.0	90.0
23MERC351	Faraday	RC	30	360599	6515798	372	-60.0	90.0
23MERC352	Faraday	RC	12	360649	6515808	373	-60.0	90.0
23MERC353	Faraday	RC	16	360639	6515808	372	-60.0	90.0
23MERC354	Faraday	RC	22	360630	6515808	372	-60.0	90.0
23MERC355	Faraday	RC	24	360621	6515807	372	-60.0	90.0
23MERC356	Faraday	RC	28	360610	6515807	372	-60.0	90.0
23MERC357	Faraday	RC	32	360601	6515807	372	-60.0	90.0
23MERC358	Faraday	RC	14	360649	6515819	372	-60.0	90.0
23MERC359	Faraday	RC	18	360640	6515818	372	-60.0	90.0
23MERC360	Faraday	RC	23	360630	6515819	372	-60.0	90.0
23MERC361	Faraday	RC	34	360610	6515818	371	-60.0	90.0
23MERC362	Faraday	RC	14	360649	6515830	371	-60.0	90.0
23MERC363	Faraday	RC	19	360639	6515830	371	-60.0	90.0
23MERC364	Faraday	RC	24	360630	6515831	371	-60.0	90.0
23MERC365	Faraday	RC	22	360619	6515831	371	-60.0	90.0
23MERC366	Trainline	RC	60	360570	6516102	369	-60.0	90.0
23MERC367	Trainline	RC	54	360571	6516020	370	-60.0	90.0
23MERC368	Trainline	RC	82	360490	6516022	370	-60.0	90.0
23MERC369	Trainline	RC	48	360564	6515978	370	-60.0	90.0
23MERC370	Trainline	RC	62	360522	6515980	370	-60.0	90.0
23MERC371	Trainline	RC	80	360485	6515979	371	-60.0	90.0
23MERC372	Faraday	RC	102	360452	6515588	383	-60.0	90.0
23MERC373	Faraday	RC	96	360487	6515590	383	-60.0	90.0
23MERC374	Faraday	RC	78	360518	6515589	381	-60.0	90.0
23MERC375	Faraday	RC	102	360486	6515622	383	-60.0	90.0
23MERC376	Faraday	RC	120	360451	6515623	383	-60.0	90.0
23MERC377	Faraday	RC	36	360577	6515545	377	-60.0	90.0
23MERC378	Faraday	RC	48	360540	6515545	379	-60.0	90.0
23MERC379	Faraday	RC	24	360597	6515559	375	-60.0	90.0
23MERC380	Faraday	RC	30	360577	6515558	377	-60.0	90.0
23MERC381	Faraday	RC	36	360577	6515576	377	-60.0	90.0
23MERC382	Faraday	RC	45	360556	6515576	377	-60.0	90.0
23MERC383	Faraday	RC	57	360537	6515574	378	-60.0	90.0
23MERC384	Faraday	RC	8	360658	6515702	375	-60.0	90.0
23MERC385	Faraday	RC	8	360658	6515710	375	-60.0	90.0
23MERC386	Faraday	RC	17	360659	6515789	373	-60.0	90.0
23MERC387	Faraday	RC	16	360659	6515798	372	-60.0	90.0
23MERC388	Faraday	RC	9	360659	6515807	372	-60.0	90.0

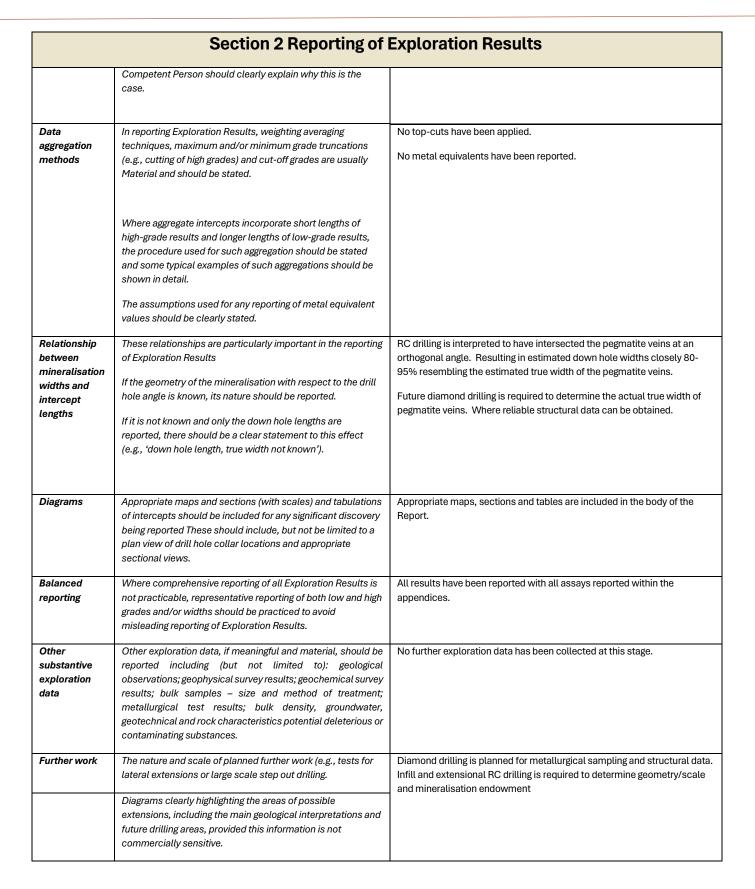
Hole ID	Prospect	Drill Type	Total Depth (m)	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth
23MERC389	Faraday	RC	9	360660	6515819	372	-60.0	90.0
23MERC390	Faraday	RC	9	360662	6515829	371	-60.0	90.0
23MERC391	Faraday	RC	10	360662	6515838	371	-60.0	90.0
23MERC392	Faraday	RC	16	360649	6515839	371	-60.0	90.0
23MERC393	Faraday	RC	21	360639	6515841	371	-60.0	90.0
23MERC394	Faraday	RC	42	360560	6515792	372	-60.0	90.0
23MERC395	Faraday	RC	42	360561	6515777	372	-60.0	90.0
23MERC396	Faraday	RC	45	360549	6515777	372	-60.0	90.0
23MERC397	Faraday	RC	78	360517	6515662	379	-60.0	90.0
23MERC398	Faraday	RC	96	360488	6515663	381	-60.0	90.0
23MERC399	Faraday	RC	115	360447	6515661	381	-60.0	90.0
23MERC400	Faraday	RC	72	360521	6515701	378	-60.0	90.0
23MERC401	Faraday	RC	92	360490	6515704	379	-60.0	90.0
23MERC402	Faraday	RC	106	360447	6515702	379	-60.0	90.0
23MERC403	Faraday	RC	72	360524	6515739	376	-60.0	90.0
23MERC404	Faraday	RC	84	360491	6515739	377	-60.0	90.0
23MERC405	Faraday	RC	100	360448	6515740	377	-60.0	90.0
23MERC406	Faraday	RC	70	360511	6515779	374	-60.0	90.0
23MERC407	Faraday	RC	102	360447	6515781	376	-60.0	90.0
23MERC408	Faraday	RC	66	360517	6515811	373	-60.0	90.0
23MERC409	Faraday	RC	72	360489	6515815	374	-60.0	90.0
23MERC410	Faraday	RC	96	360451	6515820	374	-60.0	90.0
MEDD073	Faraday	DD	33	360581	6515649	374	-59.6	88.9
MEDD074	Faraday	DD	28	360580	6515704	373	-60.6	89.5
MERC241	Faraday	RC	122	360662	6515784	372	-60.0	270.0
MERC242	Faraday	RC	122	360577	6515777	372	-60.0	90.0
MERC243	Faraday	RC	92	360548	6515608	377	-60.0	90.0
MERC244	Faraday	RC	104	360536	6515777	373	-60.0	90.0
MERC245	Faraday	RC	92	360489	6515781	375	-60.0	90.0
MERC246	Faraday	RC	50	360606	6515777	372	-60.0	90.0
MERC247	Faraday	RC	32	360635	6515736	374	-60.0	90.0
MERC248	Faraday	RC	38	360616	6515736	373	-60.0	90.0
MERC249	Faraday	RC	50	360576	6515740	373	-59.7	93.5
MERC250	Faraday	RC	50	360544	6515747	374	-59.0	91.6
MERC251	Faraday	RC	27	360629	6515699	374	-59.8	96.2
MERC252	Faraday	RC	50	360586	6515609	375	-58.9	89.0
MERC253	Faraday	RC	32	360616	6515654	374	-59.5	88.7
MERC254	Faraday	RC	44	360583	6515648	374	-57.5	90.8
MERC255	Faraday	RC	50	360541	6515644	377	-59.7	90.8
MERC256	Faraday	RC	41	360608	6515611	375	-58.4	90.0
MERC257	Faraday	RC	44	360579	6515701	373	-59.7	96.1
MERC258	Faraday	RC	50	360539	6515692	376	-60.6	89.5

APPENDIX 2: Table 1 as per the JORC Code Guidelines (2012)

	Section 1 Sampling	Techniq	ues an	d Data		
Criteria	JORC Code Explanation			Commenta	ry	
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	data has be Grade contr not reported All RC samp beneath a c cone sampl numbered c Care was ta samples har quantities. T sample pile: DD samples to logged littl metres to 1. All samples the prospec to ensure re No other me for sampling A sodium pe hydrochlorid Emission Sp	en previousl ol drilling re: d. oles have be yclone on th e splitter. Tv alico bags, v ken to ensui ve been coll The remaindi s at the drill s of HQ2 and nological and 3 metres. were assay tive pegmat presentative easurement g other than c acid to dige pectrometry	sults are not consider en acquired at one m e RC drill rig. Sample vo identical sub-samp with typical masses ra re that both original su ected representativel er of the sample reject site. I PQ size quarter core d mineralisation bour ed at single metre sar ite vein and 3-5m into	red to be mater etre intervals fr size was then r oles have been anging betweer ub-samples and y, and thereford it is retained in have been acco indaries at length mple intervals. the ultramafic ling have been n survey tools. sing nickel cruci	al and therefore, om a chute educed through a captured in pre- 2 and 3.5kg. d duplicate sub- are of equal the short term in uired according as between 0.3 With sampling of waste rock host used in the holes bles and sma Optical
Drilling Techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Kalgoorlie, V 1100/350 c 850psi boos system for s Diamond dr Diamond Dr	Vestern Aus ompressor a ster. A 143n sample colle illing at Fara rilling, who a 22 and PQ3 (day Lithium Project w re based in Kalgoorlie diameter for metallur	L350 RC drill rig nounted 1000ct was used with vas carried out 1 a, Western Aust	g with an on board im auxiliary, cone splitter by Westralian ralia. Core was
		Drill type RC DD	Year 2022 2023 2022 2023 2023 otal	Number of drillholes 18 401 2 11 432	Metres drilled 1,090 15,727 61 399 17,277	Assays 485 7,618 0 127 8,230

	Section 1 Sampling	Techniques and Data
Drill Sample	Method of recording and assessing core and chip sample recoveries and results assessed.	The geologist recorded the sample recovery during the drilling program, and these were overall very good. With all sampling being dry.
Recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Minor sample loss was recognised while sampling the first metre of some drill holes due to very fine grain size of the surface and near-surface material however all transitional and fresh samples have good sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade has been recognised.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	All RC drillholes have been geologically logged for lithology, weathering, alteration, and mineralogy.
	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core	All samples have been logged in the field at the time of drilling and sampling (both quantitatively and qualitatively where viable), with spoil material and sieved rock chips assessed. All RC holes and chip trays are photographed.
	(or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All DD holes have been geologically logged (both quantitatively and qualitatively) for lithology, weathering, alteration and mineralogy and sampled following drilling. All DD holes are photographed.
		Geochemical analysis of each hole has been correlated back to logged geology for validation.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Samples of HQ2 and PQ3 size core at lengths between 0.3 metres to 1.3 metres have been cut with an Almonte core saw. Analysis has utilised quarter, half and whole core submitted for analysis. Dependent on test work required.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples collected at 1 metre intervals from a cyclone-mounted cone splitter to yield a 2 to 3 kg sub-samples.
		Individual samples have been weighed as received and then dried in a gas oven for up to 12 hours at 105°C.
		Samples >3 kg's have been riffle split 50:50 and excess discarded. All samples have been then pulverised in a LM5 pulveriser for 5 minutes to achieve 85% passing 75um. 1:50 grind checks have been performed to verify passing was achieved.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	A 300g split was taken at the bowl upon completion of the grind and sent to the next facility for assay. The remainder of the sample (now pulverised) was bagged and retained until further notice.
		For each submitted sample, the remaining sample (material) less the aliquot used for analysis has been retained, with the majority retained and returned to the original calico bag and a nominal 300g portion split into a pulp packet for future reference.
Quality of assay data and	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Widgie Nickel has established QAQC procedures for all drilling and sampling programs including the use of commercial Certified Reference Material (CRM) as field and laboratory standards, field and laboratory duplicates and
laboratory tests	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	blanks. Lithium CRM samples have been inserted into the batches by the geologist, at
	Whether sample sizes are appropriate to the grain size of the material being sampled.	a nominal rate of 5% of the total samples. Field duplicate samples have been taken in visibly mineralised zones, at a
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	rate of 2% of total samples. Samples of blank material have been submitted immediately after visibly mineralised zones at a nominal rate of 5% of the total samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the	Sample size is considered appropriate to the grain size of the material being sampled.

	Section 1 Sampling	Techniques and Data
	analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Two assay laboratories were utilised. Initially Nagrom Commercial Laboratories, then Intertek Minerals based in Perth, Western Australia.
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Holes MERC241-MERC258 were assayed by Nagrom commercial Laboratories located in Kelmscott, Western Australia. 19 elements were assayed via a 2 stage analysis. Peroxide Fusion Digest with ICP-OES finish for Li, B, Be, Cs, Rb. Li Borate fusion with XRF finish for Al, Ba, Ca, Fe, K, Mg, Mn, Nb, P, S, Sn, Sr, Ta, W.
		RC holes 23MERC001-23MERC410 and Diamond holes 23MEDD001- MEDD013 were assayed by Intertek in Perth, 21 elements including lithium related analytes as per the laboratory's procedure for a sodium peroxide fusion using nickel crucibles and hydrochloric acid to digest. With an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) finish for Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and W.
		Internal sample quality control analysis was then conducted on each sample and on the batch by the laboratory.
		Results have been reported to Widgie Nickel in CSV, PDF and XLS formats.
		A detailed QAQC analysis is being carried out with all results to be assessed for repeatability and meeting expected values relevant to lithium and related elements. Any failures or discrepancies are followed up as required.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes	Assay results are provided by the laboratory to Widgie Nickel in CSV, PDF and XLS formats, and then validated and entered into the database managed by an external Database contractor. Backups of the database are stored both in and out of office.
	The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	Assay, Sample ID and logging data are matched and validated using filters in the drill database. The data is further visually validated by Widgie Nickel geologists and database staff.
		Significant intersections are verified by senior Widgie Nickel geologists. QAQC reports are run and the performance of the laboratory is evaluated periodically by senior Widgie Nickel geologists.
		Metallurgical diamond holes twinned RC drill holes to ensure appropriate grade for metallurgical test work.
		Oxide Li_2O value is calculated by multiplying elemental Li% by a factor of 2.153.


	Section 1 Sampling Techniques and Data		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used <i>Quality and adequacy of topographic control</i>	A differential GPS (DGPS) has been used to determine the majority of drillhole collar locations, accurate to within 0.1 metres. MGA94_51S is the grid system used in this program. Downhole survey using Reflex Sprint IQ gyro survey equipment was conducted during the program by the drilling contractor. Downhole Gyro survey data have been converted from true north to MGA94 Zone51S and saved into the data base. The formulas used are: Grid Azimuth = True Azimuth + Grid Convergence. Grid Azimuth = Magnetic Azimuth + Magnetic Declination + Grid Convergence. The Magnetic Declination and Grid Convergence have been calculated with and accuracy to 1 decimal place using plugins in QGIS. Magnetic Declination = 0.8 Grid Convergence = -0.7 Topographic control is provided by collar surveys drilled in this campaign, and by either collar survey or historical topographic surveys for historical data. Topographic control is considered adequate.	
Data spacing and distribution	Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	All RC drill holes were sampled at 1 metre intervals down hole. No sample compositing has occurred. This drilling was carried out over the Faraday-Trainline Lithium Project at drill spacing of 10m x 10m, 20m x 20m, 40m x 40m and 80m x 80m. Minor variation in drill spacing to allow for vegetation preservation. The drill spacing is deemed adequate to establish appropriate geological continuity.	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Previous drill holes and geological mapping aided in the determination that the interpretated pegmatite veins dip shallowly to the west at -20o. All subsequent drilling was orientated at -60o towards the east at 090o to gain optimum drill angles orthogonal to the interpretated pegmatite veins.	
Sample security	The measures taken to ensure sample security	All RC samples were sent to Intertek Kalgoorlie for sample preparation. Pulps were then sent from Intertek Kalgoorlie to Intertek Perth for assay. Sample security was not considered a significant risk to the project. No specific measures have been taken by Widgie Nickel to ensure sample security beyond the normal chain of custody for a sample submission.	

	Section 1 Sampling Techniques and Data		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of the exploration program was undertaken prior to the drill program by Widgie Nickel geology management. Regular reviews and site visits have been made during the conduct of drill program. Staff and contract geologists have been based on site prior to, during and on completion of the drill and sample program to ensure proper quality control as per the modern mining industry standards.	

	Section 2 Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Faraday-Trainline Lithium Project is located on mining lease M15/102, which is held by Widgie Nickel Ltd wholly owned subsidiary, Mt Edwards Critical Metals Pty Ltd. Estrella Resources Limited (ASX:ESR) holds a royalty of \$0.50 of 75% of each tonne of Lithium bearing ore extracted on M15/102. M15/102 was granted on 01/04/1985 and expires on 10/04/2027. Any mining at Munda will require a Miscellaneous License for access to the Coolgardie-Norseman Highway, a distance of approximately 5km. There are no known impediments to mining in the area	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Widgie Nickel has held an interest in M15/102 since July 2021, hence all prior work has been conducted by other parties. The ground has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by Western Mining Corporation. Numerous companies have taken varying interests in the project area since this time. Only minor historical Lithium work in the form of wide spaced soil sampling has been completed on M15/102. Historical exploration results and data quality have been considered during the planning of ongoing exploration on M15/102. 	
Geology	Deposit type, geological setting and style of mineralisation.	 The Mt Edwards Project lithium tenements cover the northern margin of the Widgiemooltha Dome. The mineralisation at Faraday-Trainline lithium project is hosted within lithium-caesium-tantalum (LCT) pegmatites associated with fractionated late-stage granitic intrusions. The stacked pegmatites veins have intruded the steeply dipping mafic/ultramafic country rock dipping shallowly to the west at 20° and are found to be outcropping in places. The pegmatites widths vary from 1m to 23m in thickness, with greater thicknesses observed within the ultramafic host. Faraday and Trainline Lithium deposits are bifurcated by a late stage eastwest trending dolerite dyke. This dyke is interpreted to be between 30-60m thick. The pegmatites have a strike length of 750m north-south, are open at depth. 	
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the	All exploration drilling data has previously been reported. Appropriate maps, sections and tables are included in the body of the Report.	

Sectior	3 Estimation and Reporting or 10 Sector 20	f Mineral Resources
Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Drillhole data was extracted directly from the Company's drillhole Microsoft Access database, which includes interna data validation protocols. Data was further validated by Cube Consulting upon receipt and prior to use in the estimation. The drillhole data was validated using Microsoft Access and
		Surpac software validation protocols and finally visually in 3 dimensional space.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The CP for the Mineral Resource Mr Mark Zammit (Principal Consultant, Cube Consulting) is a consultant to Widgie Nickel and has not visited site. However, 3 PQ diamond holes were inspected at the company's core yard in addition to a review of numerous photography of RC chip trays and diamond core for both the Faraday and Trainline mineralisation. The CP is the opinion that this work has all been completed to an appropriate standard for the mineral resource reported. Mr William Stewart, Geology Manager at Widgie Nickel is the Competent Person for data collection, is a full time employee of the Company and has undertaken numerous site visits.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence in the geological interpretation is reflected by the assigned resource classification. There is reasonable leve of confidence in the geological interpretation due to the consistent drilling results and the outcropping geology.
	Nature of the data used and of any assumptions made.	Both assay and geological data were used for the mineralisation interpretation. The lithium mineralisation is defined by a nominal 0.25 to 0.3% Li ₂ O cut-off grade, within the pegmatites. Outcrop mapping of the pegmatite veins was used to guide the along strike interpretation.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	No alternative interpretations were considered. Any alternative interpretations are unlikely to significantly affect the Mineral Resource estimate.
	The use of geology in guiding and controlling Mineral Resource estimation.	Geological logging and outcrop mapping has been used for interpretation of the pegmatites.
	The factors affecting continuity both of grade and geology.	The mineralisation is contained within pegmatite veins that are readily distinguished from the surrounding rocks. Sectional interpretation and wireframing indicates reasonable continuity of the interpreted pegmatite veins both on-section and between sections. The confidence in the grade and geological continuity is reflected by the assigned resource classification.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Six sets of anastomosing pegmatites have been identified across the combined Faraday-Trainline deposits which extend from surface to a depth of 135m. The pegmatites strike north- south for approximately 725m and dip to the west typically between 15 and 25°. Within the six pegmatite veins there are eleven higher-grade (>0.25% Li ₂ O) zones. The pegmatites have been drilled over ar area of 800 m x 600m. The individual mineralised pegmatites vary in thickness from 1 to 23m and average 6m thick overall. The higher grade Li ₂ O domains within the pegmatites average 4.5m thick.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Samples were composited for Li ₂ O%, Cs ppm, Fe%, Nb ppm Rb ppm and Ta2O5 ppm to 1m within each estimation domain A geostatistical analysis was conducted to determine the influence of any extreme values resulting in very minor top capping applied to Cs ppm, Nb ppm, and Ta2O5 ppm. Variogram modelling was undertaken for all domains with sufficient data to produce robust variograms. All variogram models were undertaken on Gaussian transformed composite data and then back-transforming the Gaussian models to rea space for use in interpolation. Variogram modelling for the Li ₂ O mineralisation typically displayed a relative nugget of 0.42 and

Section	3 Estimation and Reporting o	f Mineral Resources
		a isotropic range of 42 to 83m in the plane of the pegmatite and less than 5m perpendicular to this in the minor direction. The estimation block size for the area closely spaced drilling (mostly 10m x 10m) at Faraday was 5m (X) × 5m (Y) × 2m (Z) and for the remaining areas at Faraday and all of Trainline defined by wider spaced drilling (20m up to 80m) the parent block size used was 20m (X) × 20m (Y) × 4m (Z). For volume resolution, sub-blocking was set to 2.5m (X) × 2.5m (Y) × 0.5m (Z). Grade estimation used Ordinary Kriging with hard domain boundaries with parameters optimised for each domain based on the variogram models. For Li ₂ 0%, the domain boundaries included the lithium-mineralised zones within the pegmatites and also the surrounding poorly mineralised material within each pegmatite. Each of the whole pegmatites represented hard boundaries for the estimation of Cs ppm, Fe%, Nb ppm, Rb ppm and Ta2O5 ppm. The Fe% was converted to ferric oxide (Fe2O3) by dividing Fe by 0.69943 after estimation. Dynamic anisotropy (DA) was used for all grade estimates to account for the undulating nature of the pegmatites. The grade estimates used two passes with the first pass search distance of between 50 and 120m and the second pass using three times the first pass distance. The minimum number of samples was set to six and the maximum number of samples set to 16. All estimated block model grades were validated globally against the input drillhole data (including declustered data). Visual inspection of the block estimates in relation to drill data on a section-by-section basis was completed. Semi-local comparison of composite and block grades using Swath Plots on northing, easting, elevation and oblique slices was also completed.
	Description of how the geological interpretation was used to control the resource estimates.	Geological interpretation of the pegmatites was completed in 3D using Leapfrog Geo software. The interpretation of mineralisation was based on geological logging and Li ₂ O content. A nominal grade of 0.25 to 0.3% Li ₂ O was used to define the mineralisation within the interpreted pegmatites and ultimately the used as hard boundaries for Li ₂ O grade estimation. For Fe%, Nb ppm, Rb ppm and Ta2O5 ppm, the pegmatite interpretation volumes were used for grade estimation. A late-stage dolerite dyke striking east-west over-prints the pegmatites and the interpreted volume model was used to deplete the mineralisation.
	Discussion of basis for using or not using grade cutting or capping.	The top-cap levels were determined using a combination of methods including spatial location, histograms, log probability plots and CVs. Top-caps were reviewed and applied on an individual domain basis. No top capping was deemed necessary for Li ₂ O given the relatively low coefficients of variation typically less than 0.8. The only top-caps applied included 500 and 530 Cs ppm, 200 Nb ppm and 90 and 100 Ta2O5 ppm.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	This is an updated Mineral Resource for the Faraday deposit and a maiden Mineral Resource for Trainline. There has been no production.
	The assumptions made regarding recovery of by- products	No assumptions have been applied regarding the recovery of by-products.
	Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Iron (Fe) is potentially deleterious and has been included in the model estimation process for future analysis.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Grade estimation was based on parent blocks of $5m(E) \times 5m(N) \times 2m(RL)$ and $20m(E) \times 20m(N) \times 4m(RL)$. The parent block sizes are generally around half the drill spacing with the smaller block sized used for the portion of Faraday defined by 10m x 10m drilling and the larger block size for all other material where the drill spacing is $40m \times 40m$ or larger.

Section	3 Estimation and Reporting o	f Mineral Resources
	Any assumptions behind modelling of selective mining units.	In addition to the block size, the search distances used ensured capturing adequate data without over smoothing the estimate. Selective mining units were not modelled. The sub-cell size (2.5mE x 2.5mN x 0.5mRL) honours the domain volumes and geometry and allow for re-blocking to standard mining parameters used in Western Australia for similar mineralisation styles.
	Any assumptions about correlation between variables.	Li ₂ O is not correlated to any other elements. Ta and Nb are moderately correlated as well as RB and Cs. Fe is weak to moderately negatively correlated.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	All estimated block model grades were validated globally against the input drillhole data (including declustered data). Visual inspection of the block estimates in relation to drill data on a section-by-section basis was completed. Semi-local comparison of composite and block grades using Swath Plots on northing, easting, elevation and oblique slices was also completed. No production has taken place at Faraday-Trainline.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages have been estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource estimate for the combined Faraday- Trainline deposits has been reported above a cut-off grade of 0.3% Li ₂ O for material above the 310m RL to represent the portion of the resource that may be considered for eventual economic extraction by open pit methods. For material below the 310mRL, an elevated reporting cut-off grade of 0.5% Li ₂ O has been applied and only material displaying sufficient continuity and width that would be typically amenable to underground mining has been included for reporting.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The mineralisation at Faraday-Trainline extends from surface and is considered to be suitable for open pit mining. The portion of the Mineral Resource reported as amenable to open pit mining has not been constrained within an optimisation shell but limited to the 310m Rl which approximates 65m below surface and it is considered there are no mining factors which are likely to affect the current assumption that the deposit has reasonable prospects for eventual economic extraction. The Mineral Resource reported below the 310m Rl has been limited to areas amenable to a possible underground mining method such as room and pillar.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Preliminary testing of lithium mineralisation at the Faraday Project has determined spodumene to be the main lithium- bearing mineral. Good quality concentrates above 6.0% Li ₂ O have been achieved testing crushed and sized samples by heavy liquid separation at 2.9 and 3.0 specific gravity. A flowsheet with a ball mill grind to P80 106µm, low intensity magnetic separation and desliming ahead of flotation has shown promise and supports further optimisation and assessment using a range of variability samples. At this early stage of assessment, it is reasonably assumed that an effective process flowsheet can be developed for treatment of the Faraday mineralisation and that concentrate/s of approximately 6.0% Li ₂ O will be achievable.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be	No environmental impact assessments have been conducted. It is assumed that any remedial action to limit the environmental impacts of mining and processing will not significantly affect the economic viability of the project.

Sectio	on 3 Estimation and Reporting o	I Mineral Resources
	reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	From a total of 110 determination measurements using th Archimedes principle, 93 have been collected for pegmatit material from diamond drill core. The measurements represen a reasonable distribution of sample depths below surface. A density of 2.67 t/m3 was determined for mineralise pegmatite material. The fresh mafic and ultramafic countr rock has been assigned a density of 2.90 t/m3 and weathere mafic and ultramafic material has been assigned a density of 2.2 t/m3. Data for weathered material was not available and values hav been assigned based on similar rock types within the regior The values applied are in line with density data from simila deposits.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The Mineral Resource has been classified as Measured Indicated and Inferred based on the basis of confidence in geology, mineralogy and grade continuity, consideration of the quality of the sampling and assay data and confidence in the estimation of Li ₂ O. The area at Faraday defined by 10m x 10m drilling has been classified as Measured and this extends for approximatel 300m along strike and 125m down dip. Indicated material a Faraday includes 20m and 40m spaced drilling immediatel surround the Measured material. At Trainline the Indicated material is defined by 40m spaced drilling. At both Farada and Trainline, Inferred material is defined as 80m spaced drilling and some minor material representing down dip and along strike interpretation extrapolation was not classified based on the lack of supporting data.
	Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data).	The classification was based on data quality, sample spacing geological understanding of mineralisation controls and geological/mineralisation continuity and quality of the fina grade estimate. The assigned classification reflects the Competent Person's assessment of the accuracy and confidence levels in the Mineral Resource estimate.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	In the Competent Persons opinion, the MRE conducted is a fai view of the deposit. The assigned classification of Measured Indicated and Inferred for the material above 310m RL (open pi resource above 0.3% Li ₂ O) and Inferred for all material belov 310m RL (underground resource above 0.5% Li ₂ O) reflects the Competent Person's assessment of the accuracy and confidence levels in the Mineral Resource estimate.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Mineral Resource has been reviewed by Widgie Nickel and internally as part of normal validation processes by Cub Consulting. No external audit or review of the current Mineral Resource has been conducted.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person.	The relative accuracy of the Mineral Resource Estimates is reflected in the classification and reporting of the Minera Resource as Measured, Indicated and Inferred in accordance with the guidelines on the 2012 JORC Code.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	All Mineral Resources are considered to be global estimates o Li ₂ O grade.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No production has occurred from the deposit.